No Arabic abstract
We derive Tsallis entropy, Sq, from universal thermostat independence and obtain the functional form of the corresponding generalized entropy-probability relation. Our result for finite thermostats interprets thermodynamically the subsystem temperature, T1, and the index q in terms of the temperature, T, entropy, S, and heat capacity, C of the reservoir as T1 = T exp(-S/C) and q = 1 - 1/C. In the infinite C limit, irrespective to the value of S, the Boltzmann-Gibbs approach is fully recovered. We apply this framework for the experimental determination of the original temperature of a finite thermostat, T, from the analysis of hadron spectra produced in high energy collisions, by analyzing frequently considered simple models of the quark-gluon plasma.
We revisit the physical pictures for the hadronization of quark-gluon plasma, concentrating on the problem of entropy production during processes where the number of degrees of freedom is seemingly reduced due to color confinement. Based on observations on Regge trajectories we propose not having an infinite tower of hadronic resonances. We discuss possible entropy production mechanisms far from equilibrium in terms of stochastic dynamics.
The contribution presents a brief summary of the Gauge/Gravity approach to the study of hydrodynamic flow of the quark-gluon plasma formed in heavy-ion collisions, in a boost-invariant setting (Bjorken flow). Considering the ideal case of a supersymmetric Yang-Mills theory for which the AdS/CFT correspondence gives a precise form of the Gauge/Gravity duality, the properties of the strongly coupled expanding plasma are put in one-to-one correspondence with the metric of a 5-dimensional black hole with the horizon moving away in the 5th dimension and its deformations consistent with the relevant Einstein equations. Several recently studied aspects of this framework are recalled and put in perspective. New results in collaboration with G.Beuf and M.Heller on the early time expansion towards the hydrodynamical regime are provided giving a new insight on the far-from-equilibrium behavior of the fluid at strong coupling and the thermalization and isotropization problems.
Inspired by Laughlins theory of the fractional quantum Hall effect, we propose a wave function for the quark-gluon plasma and the nucleons. In our model, each quark is transformed into a composite particle via the simultaneous attachment of a spin monopole and an isospin monopole. This is induced by the mesons endowed with both spin and isospin degrees of freedom. The interactions in the strongly-correlated quark-gluon system are governed by the topological wrapping number of the monopoles, which is an odd integer to ensure that the overall wave function is antisymmetric. The states of the quark-gluon plasma and the nucleons are thus uniquely determined by the combination of the monopole wrapping number m and the total quark number N. The radius squared of the quark-gluon plasma is expected to be proportional to mN. We anticipate the observation of such proportionality in the heavy ion collision experiments.
We evaluate heavy-quark (HQ) transport properties in a Quark-Gluon Plasma (QGP) employing interaction potentials extracted from thermal lattice QCD. Within a Brueckner many-body scheme we calculate in-medium T-matrices for charm- and bottom-quark scattering off light quarks in the QGP. The interactions are dominated by attractive meson and diquark channels which support bound and resonance states up to temperatures of ~1.5 T_c. We apply pertinent drag and diffusion coefficients (supplemented by perturbative scattering off gluons) in Langevin simulations in an expanding fireball to compute HQ spectra and elliptic flow in sqrt{s_{NN}}=200 GeV Au-Au collisions. We find good agreement with semileptonic electron-decay spectra which supports our nonperturbative computation of the HQ diffusion coefficient, suggestive for a strongly coupled QGP.
Penetrating probes in heavy-ion collisions, like jets and photons, are sensitive to the transport coefficients of the produced quark-gluon plasma, such as shear and bulk viscosity. Quantifying this sensitivity requires a detailed understanding of photon emission and jet-medium interaction in a non-equilibrium plasma. Up to now, such an understanding has been hindered by plasma instabilities which arise out of equilibrium and lead to spurious divergences when evaluating the rate of interaction of hard probes with the plasma. In this paper, we show that taking into account the time evolution of an unstable plasma cures these divergences. We calculate the time evolution of gluon two-point correlators in a setup with small initial momentum anisotropy and show that the gluon occupation density grows exponentially at early times. Based on this calculation, we argue for a phenomenological prescription where instability poles are subtracted. Finally, we show that in the Abelian case instability fields do not affect medium-induced photon emission to our order of approximation.