Do you want to publish a course? Click here

Prospect of Studying Hard X- and Gamma-Rays from Type Ia Supernovae

136   0   0.0 ( 0 )
 Added by Keiichi Maeda
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform multi-dimensional, time-dependent radiation transfer simulations for hard X-ray and gamma-ray emissions, following radioactive decays of 56Ni and 56Co, for two-dimensional delayed detonation models of Type Ia supernovae (SNe Ia). The synthetic spectra and light curves are compared with the sensitivities of current and future observatories for an exposure time of 10^6 seconds. The non-detection of the gamma-ray signal from SN 2011fe at 6.4 Mpc by SPI on board INTEGRAL places an upper limit for the mass of 56Ni of lesssim 1.0 Msun, independently from observations in any other wavelengths. Signals from the newly formed radioactive species have not been convincingly measured yet from any SN Ia, but the future X-ray and gamma-ray missions are expected to deepen the observable horizon to provide the high energy emission data for a significant SN Ia sample. We predict that the hard X-ray detectors on board NuStar (launched in 2012) or ASTRO-H (scheduled for launch in 2014) will reach to SNe Ia at sim15 Mpc, i.e., one SN every few years. Furthermore, according to the present results, the soft gamma-ray detector on board ASTRO-H will be able to detect the 158 keV line emission up to sim25 Mpc, i.e., a few SNe Ia per year. Proposed next generation gamma-ray missions, e.g., GRIPS, could reach to SNe Ia at sim20 - 35 Mpc by MeV observations. Those would provide new diagnostics and strong constraints on explosion models, detecting rather directly the main energy source of supernova light.



rate research

Read More

Merging white dwarfs are a possible progenitor of Type Ia supernovae (SNe Ia). While it is not entirely clear if and when an explosion is triggered in such systems, numerical models suggest that a detonation might be initiated before the stars have coalesced to form a single compact object. Here we study such peri-merger detonations by means of numerical simulations, modeling the disruption and nucleosynthesis of the stars until the ejecta reach the coasting phase. Synthetic light curves and spectra are generated for comparison with observations. Three models are considered with primary masses 0.96 Msun, 1.06 Msun, and 1.20 Msun. Of these, the 0.96 Msun dwarf merging with an 0.81 Msun companion, with a Ni56 yield of 0.58 Msun, is the most promising candidate for reproducing common SNe Ia. The more massive mergers produce unusually luminous SNe Ia with peak luminosities approaching those attributed to super-Chandrasekhar mass SNe Ia. While the synthetic light curves and spectra of some of the models resemble observed SNe Ia, the significant asymmetry of the ejecta leads to large orientation effects. The peak bolometric luminosity varies by more than a factor of 2 with the viewing angle, and the velocities of the spectral absorption features are lower when observed from angles where the light curve is brightest. The largest orientation effects are seen in the ultraviolet, where the flux varies by more than an order of magnitude. Despite the large variation with viewing angle, the set of three models roughly obeys a width-luminosity relation, with the brighter light curves declining more slowly in the B-band. Spectral features due to unburned carbon from the secondary star are also seen in some cases.
Despite their use as cosmological distance indicators and their importance in the chemical evolution of galaxies, the unequivocal identification of the progenitor systems and explosion mechanism of normal type Ia supernova (SN Ia) remains elusive. The leading hypothesis is that such a supernova is a thermonuclear explosion of a carbon-oxygen white dwarf, but the exact explosion mechanism is still a matter of debate. Observation of a galactic SN Ia would be of immense value in answering the many open questions related to these events. One potentially useful source of information about the explosion mechanism and progenitor is the neutrino signal. In this paper we compute the expected neutrino signal from a gravitationally confined detonation (GCD) explosion scenario for a SN~Ia and show how the flux at Earth contains features in time and energy unique to this scenario. We then calculate the expected event rates in the Super-K, Hyper-K, JUNO, DUNE, and IceCube detectors and find both Hyper-K and IceCube would see a few events for a GCD supernova at 1 kpc or closer, while Super-K, JUNO, and DUNE would see a events if the supernova were closer than ${sim}0.3$ kpc. The distance and detector criteria needed to resolve the time and spectral features arising from the explosion mechanism, neutrino production, and neutrino oscillation processes are also discussed. The neutrino signal from the GCD is then compared with the signal from a deflagration-to-detonation transition (DDT) explosion model computed previously. We find the overall event rate is the most discriminating feature between the two scenarios followed by the event rate time structure. Using the event rate in the Hyper-K detector alone, the DDT can be distinguished from the GCD at 2$sigma$ if the distance to the supernova is less than $2.3;{rm kpc}$ for a normal mass ordering and $3.6;{rm kpc}$ for an inverted ordering.
We use the spectroscopy and homogeneous photometry of 97 Type Ia supernovae obtained by the emph{Carnegie Supernova Project} as well as a subset of 36 Type Ia supernovae presented by Zheng et al. (2018) to examine maximum-light correlations in a four-dimensional (4-D) parameter space: $B$-band absolute magnitude, $M_B$, ion{Si}{2}~$lambda6355$ velocity, vsi, and ion{Si}{2} pseudo-equivalent widths pEW(ion{Si}{2}~$lambda6355$) and pEW(ion{Si}{2}~$lambda5972$). It is shown using Gaussian mixture models (GMMs) that the original four groups in the Branch diagram are well-defined and robust in this parameterization. We find three continuous groups that describe the behavior of our sample in [$M_B$, vsi] space. Extending the GMM into the full 4-D space yields a grouping system that only slightly alters group definitions in the [$M_B$, vsi] projection, showing that most of the clustering information in [$M_B$, vsi] is already contained in the 2-D GMM groupings. However, the full 4-D space does divide group membership for faster objects between core-normal and broad-line objects in the Branch diagram. A significant correlation between $M_B$ and pEW(ion{Si}{2}~$lambda5972$) is found, which implies that Branch group membership can be well-constrained by spectroscopic quantities alone. In general, we find that higher-dimensional GMMs reduce the uncertainty of group membership for objects between the originally defined Branch groups. We also find that the broad-line Branch group becomes nearly distinct with the inclusion of vsi, indicating that this subclass of SNe Ia may be somehow different from the other groups.
The carbon-oxygen white dwarf (CO WD) + He star channel has been thought to be one of the promising scnarios to produce young type Ia supernovae (SNe Ia). Previous studies found that if the mass-accretion rate is greater than a critical value, the He-accreting CO WD will undergo inwardly propagating (off-centre) carbon ignition when it increases its mass close to the Chandrasekhar limit. The inwardly propagating carbon flame was supposed to reach the centre by previous works, leading to the production of an oxygen-neon (ONe) WD that may collapse into a neutron star but not an SN Ia. However, it is still uncertain how the carbon flame propagates under the effect of mixing mechanisms. In the present work, we aim to investigate the off-centre carbon burning of the He-accreting CO WDs by considering the effect of convective mixing. We found that the temperature of the flame is high enough to burn the carbon into silicon-group elements in the outer part of the CO core even if the convective overshooting is considered, but the flame would quench somewhere inside the WD, resulting in the formation of a C-O-Si WD. Owing to the inefficiency of thermohaline mixing, the C-O-Si WD may explode as an SN Ia if it continues to grow in mass. Our radiation transfer simulations show that the SN ejecta with the silicon-rich outer layer will form high-velocity absorption lines in Si II, leading to some similarities to a class of the high-velocity SNe Ia in the spectral evolution. We estimate that the birthrate of SNe Ia with Si-rich envelope is ~ 10^(-4)/yr in our galaxy.
We present predictions for hydrogen and helium emission line luminosities from circumstellar matter around Type Ia supernovae (SNe Ia) using time dependent photoionization modeling. ESO/VLT optical echelle spectra of the SN Ia 2000cx were taken before and up to 70 days after maximum. We detect no hydrogen and helium lines, and place an upper limit on the mass loss rate for the putative wind of less than 1.3EE{-5} solar masses per year, assuming a speed of 10 km/s and solar abundances for the wind. In a helium-enriched case, the best line to constrain the mass loss would be He I 10,830 A. We confirm the details of interstellar Na I and Ca II absorption towards SN 2000cx as discussed by Patat et al., but also find evidence for 6613.56 A Diffuse Interstellar Band (DIB) absorption in the Milky Way. We discuss measurements of the X-ray emission from the interaction between the supernova ejecta and the wind and we re-evaluate observations of SN 1992A obtained 16 days after maximum by Schlegel & Petre. We find an upper limit of 1.3EE{-5} solar masses per year. These results, together with the previous observational work on the normal SNe Ia 1994D and 2001el, disfavour a symbiotic star in the upper mass loss rate regime from being the likely progenitor scenario for these SNe. To constrain hydrogen in late time spectra, we present ESO/VLT and ESO/NTT optical and infrared observations of SNe Ia 1998bu and 2000cx 251-388 days after maximum. We see no hydrogen line emission in SNe 1998bu and 2000cx at these epochs, and we argue from modeling that the mass of such hydrogen-rich gas must be less than 0.03 solar masses for both supernovae. Comparing similar upper limits with recent models of Pan et al., it seems hydrogen-rich donors with a separation of less than 5 times the radius of the donor may be ruled out for the five SNe Ia 1998bu, 2000cx, 2001el, 2005am and 2005cf.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا