Do you want to publish a course? Click here

Disorder-free sputtering method on graphene

131   0   0.0 ( 0 )
 Added by Hyunsoo Yang
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Deposition of various materials onto graphene without causing any disorder is highly desirable for graphene applications. Especially, sputtering is a versatile technique to deposit various metals and insulators for spintronics, and indium tin oxide to make transparent devices. However, the sputtering process causes damage to graphene because of high energy sputtered atoms. By flipping the substrate and using a high Ar pressure, we demonstrate that the level of damage to graphene can be reduced or eliminated in dc, rf, and reactive sputtering processes.



rate research

Read More

173 - Jan Kunc , Yike Hu , James Palmer 2013
A method is proposed to extract pure Raman spectrum of epitaxial graphene on SiC by using a Non-negative Matrix Factorization. It overcomes problems of negative spectral intensity and poorly resolved spectra resulting from a simple subtraction of a SiC background from the experimental data. We also show that the method is similar to deconvolution, for spectra composed of multiple sub- micrometer areas, with the advantage that no prior information on the impulse response functions is needed. We have used this property to characterize the Raman laser beam. The method capability in efficient data smoothing is also demonstrated.
Nearly free electron (NFE) state is an important kind of unoccupied state in low dimensional systems. Although it is intensively studied, a clear picture on its physical origin and its response behavior to external perturbations is still not available. Our systematic first-principles study based on graphene nanoribbon superlattices suggests that there are actually two kinds of NFE states, which can be understood by a simple Kronig-Penney potential model. An atom-scattering-free NFE transport channel can be obtained via electron doping, which may be used as a conceptually new field effect transistor.
We present a study of quasi-free-standing monolayer graphene obtained by intercalation of Au atoms at the interface between the carbon buffer layer (Bu-L) and the silicon-terminated face (0001) of 4H-silicon carbide. Au intercalation is achieved by deposition of atomically thin Au on the Bu-L followed by annealing at 850 {deg}C in an Argon atmosphere. We explore the intercalation of Au and decoupling of the Bu-L into quasi-free-standing monolayer graphene by surface science characterizations and electron transport in top-gated electronic devices. By gate-dependent magnetotransport we find that the Au-intercalated buffer layer displays all properties of monolayer graphene, namely gate tunable ambipolar transport across the Dirac point, and n- or p-type doping depending on the Au content.
The two-dimensional (2D) layered semiconductors such as MoS2 have attracted tremendous interest as a new class of electronic materials. However, there is considerable challenge in making reliable contacts to these atomically thin materials. Here we present a new strategy by using graphene as back electrodes to achieve Ohmic contact to MoS2. With a finite density of states, the Fermi level of graphene can be readily modified by gate potential to ensure a nearly perfect band alignment with MoS2. We demonstrate, for the first time, a transparent contact can be made to MoS2 with essentially zero contact barrier and linear output behaviour at cryogenic temperatures (down to 1.9 K) for both monolayer and multilayer MoS2. Benefiting from the barrier-free transparent contacts, we show that a metal-insulator-transition (MIT) can be observed in a two-terminal MoS2 device, a phenomenon that could be easily masked by Schottky barrier and only seen in four-terminal devices in conventional metal-contacted MoS2 system. With further passivation y born nitride encapsulation, we demonstrate a record high extrinsic (two-terminal) field effect mobility over 1300 cm2/Vs in MoS2.
With considering the great success of scanning tunnelling microscopy (STM) studies of graphene in the past few years, it is quite surprising to notice that there is still a fundamental contradiction about the reported tunnelling spectra of quasi-free-standing graphene monolayer. Many groups observed V-shape spectra with linearly vanishing density-of-state (DOS) at the Dirac point, whereas, the others reported spectra with a gap of 60 meV pinned to the Fermi level in the quasi-free-standing graphene monolayer. Here we systematically studied the two contradicted tunnelling spectra of the quasi-free-standing graphene monolayer on several different substrates and provided a consistent interpretation about the result. The gap in the spectra arises from the out-of-plane phonons in graphene, which mix the Dirac electrons at the Brillouin zone corners with the nearly free-electron states at the zone center. Our experiment indicated that interactions with substrates could effectively suppress effects of the out-of-plane phonons in graphene and enable us to detect only the DOS of the Dirac electrons in the spectra. We also show that it is possible to switch on and off the out-of-plane phonons of graphene at the nanoscale, i.e., the tunnelling spectra show switching between the two distinct features, through voltage pulses applied to the STM tip.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا