No Arabic abstract
The study of solar neutrinos has given since ever a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and offering at the same time relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framemork more complete and stable, understanding the origin of some anomalies that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so called solar metallicity problem.
In this article we review the current state of the field of solar neutrinos, including flavour oscillations, non-standard effects, solar models, cross section measurements, and the broad experimental program thus motivated and enabled. We discuss the historical discoveries that contributed to current knowledge, and define critical open questions to be addressed in the next decade. We discuss the state of the art of standard solar models, including uncertainties and problems related to the solar composition, and review experimental and model solar neutrino fluxes, including future prospects. We review the state of the art of the nuclear reaction data relevant for solar fusion in the proton-proton chain and carbon-nitrogen-oxygen cycle. Finally, we review the current and future experimental program that can address outstanding questions in this field.
Neutrinos emitted in the carbon, nitrogen, oxygen (CNO) fusion cycle in the Sun are a sub-dominant, yet crucial component of solar neutrinos whose flux has not been measured yet. The Borexino experiment at the Laboratori Nazionali del Gran Sasso (Italy) has a unique opportunity to detect them directly thanks to the detectors radiopurity and the precise understanding of the detector backgrounds. We discuss the sensitivity of Borexino to CNO neutrinos, which is based on the strategies we adopted to constrain the rates of the two most relevant background sources, pep neutrinos from the solar pp-chain and Bi-210 beta decays originating in the intrinsic contamination of the liquid scintillator with Pb-210. Assuming the CNO flux predicted by the high-metallicity Standard Solar Model and an exposure of 1000 daysx71.3 t, Borexino has a median sensitivity to CNO neutrino higher than 3 sigma. With the same hypothesis the expected experimental uncertainty on the CNO neutrino flux is 23%, provided the uncertainty on the independent estimate of the Bi-210 interaction rate is 1.5 cpd/100t. Finally, we evaluated the expected uncertainty of the C and N abundances and the expected discrimination significance between the high and low metallicity Standard Solar Models (HZ and LZ) with future more precise measurement of the CNO solar neutrino flux.
We report on an improved measurement of the $^8$B solar neutrino interaction rate with the Borexino experiment at the Laboratori Nazionali del Gran Sasso. Neutrinos are detected via their elastic scattering on electrons in a large volume of liquid scintillator. The measured rate of scattered electrons above 3 MeV of energy is $0.223substack{+0.015 -0.016},(stat),substack{+0.006 -0.006},(syst)$ cpd/100 t, which corresponds to an observed solar neutrino flux assuming no neutrino flavor conversion of $Phisubstack{rm ES ^8rm B}=2.57substack{+0.17 -0.18}(stat)substack{+0.07 -0.07}(syst)times$10$^6$ cm$^{-2},$s$^{-1}$. This measurement exploits the active volume of the detector in almost its entirety for the first time, and takes advantage of a reduced radioactive background following the 2011 scintillator purification campaign and of novel analysis tools providing a more precise modeling of the background. Additionally, we set a new limit on the interaction rate of solar $hep$ neutrinos, searched via their elastic scattering on electrons as well as their neutral current-mediated inelastic scattering on carbon, $^{12}$C($ u, u$)$^{12}$C* ($E_{gamma}$= 15.1 MeV).
We present the first simultaneous measurement of the interaction rates of $pp$, $^7$Be, and $pep$ solar neutrinos performed with a global fit to the Borexino data in an extended energy range (0.19-2.93)$,$MeV. This result was obtained by analyzing 1291.51$,$days of Borexino Phase-II data, collected between December 2011 and May 2016 after an extensive scintillator purification campaign. We find: rate($pp$)$,$=$,$$134$$,$$pm$$,$$10$$,$($stat$)$,$$^{rm +6}_{rm -10}$$,$($sys$)$,$cpd/100$,$t, rate($^7$Be)$,$=$,$$48.3$$,$$pm$$,$$1.1$$,$($stat$)$,$$^{rm +0.4}_{rm -0.7}$$,$($sys$)$,$cpd/100$,$t, and rate($pep$)$,$=$,$$2.43$$pm$$,$$0.36$$,$($stat$)$^{+0.15}_{-0.22}$$,$($sys$)$,$cpd/100$,$t. These numbers are in agreement with and improve the precision of our previous measurements. In particular, the interaction rate of $^7$Be $ u$s is measured with an unprecedented precision of 2.7%, showing that discriminating between the high and low metallicity solar models is now largely dominated by theoretical uncertainties. The absence of $pep$ neutrinos is rejected for the first time at more than 5$,$$sigma$. An upper limit of $8.1$$,$cpd/100$,$t (95%$,$C.L.) on the CNO neutrino rate is obtained by setting an additional constraint on the ratio between the $pp$ and $pep$ neutrino rates in the fit. This limit has the same significance as that obtained by the Borexino Phase-I (currently providing the tightest bound on this component), but is obtained by applying a less stringent constraint on the $pep$ $ u$ flux.
Neutrinos produced in the Sun by electron capture reactions on $^{13}{rm N}$, $^{15}{rm O}$ and $^{17}{rm F}$, to which we refer as ecCNO neutrinos, are not usually considered in solar neutrino analysis since the expected fluxes are extremely low. The experimental determination of this sub-dominant component of the solar neutrino flux is very difficult but could be rewarding since it provides a determination of the metallic content of the solar core and, moreover, probes the solar neutrino survival probability in the transition region at $E_ usim 2.5,{rm MeV}$. In this letter, we suggest that this difficult measure could be at reach for future gigantic ultra-pure liquid scintillator detectors, such as LENA.