Do you want to publish a course? Click here

Gouy-Stodola Theorem as a variational principle for open systems

224   0   0.0 ( 0 )
 Added by Umberto Lucia Dr.
 Publication date 2012
  fields Physics
and research's language is English
 Authors Umberto Lucia




Ask ChatGPT about the research

The recent researches in non equilibrium and far from equilibrium systems have been proved to be useful for their applications in different disciplines and many subjects. A general principle to approach all these phenomena with a unique method of analysis is required in science and engineering: a variational principle would have this fundamental role. Here, the Gouy-Stodola theorem is proposed to be this general variational principle, both proving that it satisfies the above requirements and relating it to a statistical results on entropy production.



rate research

Read More

We propose a variational formulation for the nonequilibrium thermodynamics of discrete open systems, i.e., discrete systems which can exchange mass and heat with the exterior. Our approach is based on a general variational formulation for systems with time-dependent nonlinear nonholonomic constraints and time-dependent Lagrangian. For discrete open systems, the~time-dependent nonlinear constraint is associated with the rate of internal entropy production of the system. We show that this constraint on the solution curve systematically yields a constraint on the variations to be used in the action functional. The proposed variational formulation is intrinsic and provides the same structure for a wide class of discrete open systems. We illustrate our theory by presenting examples of open systems experiencing mechanical interactions, as well as internal diffusion, internal heat transfer, and their cross-effects. Our approach yields a systematic way to derive the complete evolution equations for the open systems, including the expression of the internal entropy production of the system, independently on its complexity. It might be especially useful for the study of the nonequilibrium thermodynamics of biophysical systems.
We present a variational formulation for the Navier-Stokes-Fourier system based on a free energy Lagrangian. This formulation is a systematic infinite dimensional extension of the variational approach to the thermodynamics of discrete systems using the free energy, which complements the Lagrangian variational formulation using the internal energy developed in cite{GBYo2016b} as one employs temperature, rather than entropy, as an independent variable. The variational derivation is first expressed in the material (or Lagrangian) representation, from which the spatial (or Eulerian) representation is deduced. The variational framework is intrinsically written in a differential-geometric form that allows the treatment of the Navier-Stokes-Fourier system on Riemannian manifolds.
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g. in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation $varepsilon$ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this letter, we prove a version of the adiabatic theorem for gapped ground states of quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo linear response formula for a broad class of gapped interacting systems.
427 - Umberto Lucia 2011
The variational method is very important in mathematical and theoretical physics because it allows us to describe the natural systems by physical quantities independently from the frame of reference used. A global and statistical approach have been introduced starting from non-equilibrium thermodynamics, obtaining the principle of maximum entropy generation for the open systems. This principle is a consequence of the lagrangian approach to the open systems. Here it will be developed a general approach to obtain the thermodynamic hamiltonian for the dynamical study of the open systems. It follows that the irreversibility seems to be the fundamental phenomenon which drives the evolution of the states of the open systems.
We study the one-dimensional projection of the extremal Gibbs measures of the two-dimensional Ising model, the Schonmann projection. These measures are known to be non-Gibbsian at low temperatures, since their conditional probabilities as a function of the two-sided boundary conditions are not continuous. We prove that they are g-measures, which means that their conditional probabilities have a continuous dependence on one-sided boundary condition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا