We reveal the existence of polariton soliton solutions in the array of weakly coupled optical cavities, each containing an ensemble of interacting qubits. An effective complex Ginzburg-Landau equation is derived in the continuum limit taking into account the effects of cavity field dissipation and qubit dephasing. We have shown that an enhancement of the induced nonlinearity can be achieved by two order of the magnitude with a negative interaction strength which implies a large negative qubit-field detuning as well. Bright solitons are found to be supported under perturbations only in the upper (optical) branch of polaritons, for which the corresponding group velocity is controlled by tuning the interacting strength. With the help of perturbation theory for solitons, we also demonstrate that the group velocity of these polariton solitons is suppressed by the diffusion process.