Do you want to publish a course? Click here

Multiple planets or exomoons in Kepler hot Jupiter systems with transit timing variations?

183   0   0.0 ( 0 )
 Added by Robert Szabo
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims. Hot Jupiters are thought to belong to single-planet systems. Somewhat surprisingly, some hot Jupiters have been reported to exhibit transit timing variations (TTVs). The aim of this paper is to identify the origin of these observations, identify possible periodic biases leading to false TTV detections, and refine the sample to a few candidates with likely dynamical TTVs. Methods. We present TTV frequencies and amplitudes of hot Jupiters in Kepler Q0--6 data with Fourier analysis and a frequency-dependent bootstrap calculation to assess the false alarm probability levels of the detections. Results. We identified 36 systems with TTV above four standard deviation confidence, about half of them exhibiting multiple TTV frequencies. Fifteen of these objects (HAT-P-7b, KOI-13, 127, 183, 188, 190, 196, 225, 254, 428, 607, 609, 684, 774, 1176) probably show TTVs due to a systematic observational effect: long cadence data sampling is regularly shifted transit-by-transit, interacting with the transit light curves, introducing a periodic bias, and leading to a stroboscopic period. For other systems, the activity and rotation of the host star can modulate light curves and explain the observed TTVs. By excluding the systems that were inadequately sampled, showed TTV periods related to the stellar rotation, or turned out to be false positives or suspects, we ended up with seven systems. Three of them (KOI-186, 897, 977) show the weakest stellar rotation features, and these are our best candidates for dynamically induced TTV variations. Conclusions. Those systems with periodic TTVs that we cannot explain with systematics from observation, stellar rotation, activity, or inadequate sampling may be multiple systems or even exomoon hosts.



rate research

Read More

146 - Jason H. Steffen 2012
We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-Domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anti-correlations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems Kepler-25, Kepler-26, Kepler-27, and Kepler-28, containing eight planets and one additional planet candidate.
During its four years of photometric observations, the Kepler space telescope detected thousands of exoplanets and exoplanet candidates. One of Keplers greatest heritages has been the confirmation and characterization of hundreds of multi-planet systems via Transit Timing Variations (TTVs). However, there are many interesting candidate systems displaying TTVs on such long time scales that the existing Kepler observations are of insufficient length to confirm and characterize them by means of this technique. To continue with Keplers unique work we have organized the Kepler Object of Interest Network (KOINet). The goals of KOINet are, among others, to complete the TTV curves of systems where Kepler did not cover the interaction timescales well. KOINet has been operational since March, 2014. Here we show some promising first results obtained from analyzing seven primary transits of KOI-0410.01, KOI-0525.01, KOI-0760.01, and KOI-0902.01 in addition to Kepler data, acquired during the first and second observing seasons of KOINet. While carefully choosing the targets we set demanding constraints about timing precision (at least 1 minute) and photometric precision (as good as 1 part per thousand) that were achieved by means of our observing strategies and data analysis techniques. For KOI-0410.01, new transit data revealed a turn-over of its TTVs. We carried out an in-depth study of the system, that is identified in the NASAs Data Validation Report as false positive. Among others, we investigated a gravitationally-bound hierarchical triple star system, and a planet-star system. While the simultaneous transit fitting of ground and space-based data allowed for a planet solution, we could not fully reject the three-star scenario. New data, already scheduled in the upcoming 2018 observing season, will set tighter constraints on the nature of the system.
We observed Kepler-421 during the anticipated third transit of the snow-line exoplanet Kepler-421b in order to constrain the existence and extent of transit timing variations (TTVs). Previously, the Kepler Spacecraft only observed two transits of Kepler-421b leaving the planets transit ephemeris unconstrained. Our visible light, time-series observations from the 4.3-meter Discovery Channel Telescope were designed to capture pre-transit baseline and the partial transit of Kepler-421b barring significant TTVs. We use the light curves to assess the probabilities of various transit models using both the posterior odds ratio and the Bayesian Information Criterion (BIC) and find that a transit model with no TTVs is favored to 3.6-sigma confidence. These observations suggest that Kepler-421b is either alone in its system or is only experiencing minor dynamic interactions with an unseen companion. With the Kepler-421b ephemeris constrained, we calculate future transit times and discuss the opportunity to characterize the atmosphere of this cold, long-period exoplanet via transmission spectroscopy. Our investigation emphasizes the difficulties associated with observing long-period exoplanet transits and the consequences that arise from failing to refine transit ephemerides.
We present 33 transit minimum times of 20 transiting planets discovered by the CoRoT mission, which have been obtained from ground-based observations since the missions end in 2012, with the objective to maintain the ephemeris of these planets. Twelve of the observed planets are in the CoRoT fields near the galactic center and the remaining eight planets are in the fields near the anticenter. We detect indications for significant transit timing variations in the cases of CoRoT 3b, 11b, 13b, 27b. For two more planets (CoRoT 18b and 20b) we conclude that timing offsets in early follow-up observations led to ephemeris in discovery publications that are inconsistent with timings from follow-up observations in later epochs. In the case of CoRoT-20b, this might be due to the influence from a further non-transiting planet. We also note that a significant majority (23 of 33) of our reported minimum times have negative O-C values, albeit most of them are within the expected uncertainty of the ephemeris.
The Transit Timing Variations (TTVs) technique provides a powerful tool to detect additional planets in transiting exoplanetary systems. In this paper we show how transiting planets with significant TTVs can be systematically missed, or cataloged as false positives, by current transit search algorithms, unless they are in multi-transit systems. If the period of the TTVs, P_TTV, is longer than the time baseline of the observations and its amplitude, A_TTV, is larger than the timing precision limit of the data, transiting planet candidates are still detected, but with incorrect ephemerides. Therefore, they will be discarded during follow-up. When P_TTV is shorter than the time baseline of the observations and A_TTV is sufficiently large, constant period search algorithms find an average period for the system, which results in altered transit durations and depths in the folded light curves. Those candidates can get subsequently discarded as eclipsing binaries, grazing eclipses, or blends. Also, for large enough A_TTVs, the transits can get fully occulted by the photometric dispersion of the light curves. These detection biases could explain the observed statistical differences between the frequency of multiple systems among planets detected via other techniques and those detected via transits. We suggest that new transit search algorithms allowing for non-constant period planets should be implemented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا