Do you want to publish a course? Click here

Quantum oscillations and subband properties of the two-dimensional electron gas at the LaAlO3/SrTiO3 interface

175   0   0.0 ( 0 )
 Added by Alix McCollam
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed high field magnetotransport measurements to investigate the interface electron gas in LaAlO3/SrTiO3 heterostructures. Shubnikov-de Haas oscillations reveal several 2D conduction subbands with carrier effective masses between 1 and 3 m_e, quantum mobilities of order 3000 cm^2/V s, and band edges only a few millielectronvolts below the Fermi energy. Measurements in tilted magnetic fields confirm the 2D character of the electron gas, and show evidence of inter-subband scattering.



rate research

Read More

Conventional two-dimensional electron gases are realized by engineering the interfaces between semiconducting compounds. In 2004, Ohtomo and Hwang discovered that an electron gas can be also realized at the interface between large gap insulators made of transition metal oxides [1]. This finding has generated considerable efforts to clarify the underlying microscopic mechanism. Of particular interest is the LaAlO3/SrTiO3 system, because it features especially striking properties. High carrier mobility [1], electric field tuneable superconductivity [2] and magnetic effects [3], have been found. Here we show that an orbital reconstruction is underlying the generation of the electron gas at the LaAlO3/SrTiO3 n-type interface. Our results are based on extensive investigations of the electronic properties and of the orbital structure of the interface using X-ray Absorption Spectroscopy. In particular we find that the degeneracy of the Ti 3d states is fully removed, and that the Ti 3dxy levels become the first available states for conducting electrons.
187 - Z. Q. Liu , C. J. Li , W. M. Lu 2013
The relative importance of atomic defects and electron transfer in explaining conductivity at the crystalline LaAlO3/SrTiO3 interface has been a topic of debate. Metallic interfaces with similar electronic properties produced by amorphous oxide overlayers on SrTiO3 have called in question the original polarization catastrophe model. We resolve the issue by a comprehensive comparison of (100)-oriented SrTiO3 substrates with crystalline and amorphous overlayers of LaAlO3 of different thicknesses prepared under different oxygen pressures. For both types of overlayers, there is a critical thickness for the appearance of conductivity, but its value is always 4 unit cells (around 1.6 nm) for the oxygen-annealed crystalline case, whereas in the amorphous case, the critical thickness could be varied in the range 0.5 to 6 nm according to the deposition conditions. Subsequent ion milling of the overlayer restores the insulating state for the oxygen-annealed crystalline heterostructures but not for the amorphous ones. Oxygen post-annealing removes the oxygen vacancies, and the interfaces become insulating in the amorphous case. However, the interfaces with a crystalline overlayer remain conducting with reduced carrier density. These results demonstrate that oxygen vacancies are the dominant source of mobile carriers when the LaAlO3 overlayer is amorphous, while both oxygen vacancies and polarization catastrophe contribute to the interface conductivity in unannealed crystalline LaAlO3/SrTiO3 heterostructures, and the polarization catastrophe alone accounts for the conductivity in oxygen-annealed crystalline LaAlO3/SrTiO3 heterostructures. Furthermore, we find that the crystallinity of the LaAlO3 layer is crucial for the polarization catastrophe mechanism in the case of crystalline LaAlO3 overlayers.
We report on a study of magnetotransport in LaAlO3/SrTiO3 interfaces characterized by mobilities of the order of several thousands cm$^{2}$/Vs. We observe Shubnikov-de Haas oscillations that indicate a two-dimensional character of the Fermi surface. The frequency of the oscillations signals a multiple sub-bands occupation in the quantum well or a multiple valley configuration. From the temperature dependence of the oscillation amplitude we extract an effective carrier mass $m^{*}simeq1.45$,$m_{e}$. An electric field applied in the back-gate geometry increases the mobility, the carrier density and the oscillation frequency.
Recently a metallic state was discovered at the interface between insulating oxides, most notably LaAlO3 and SrTiO3. Properties of this two-dimensional electron gas (2DEG) have attracted significant interest due to its potential applications in nanoelectronics. Control over this carrier density and mobility of the 2DEG is essential for applications of these novel systems, and may be achieved by epitaxial strain. However, despite the rich nature of strain effects on oxide materials properties, such as ferroelectricity, magnetism, and superconductivity, the relationship between the strain and electrical properties of the 2DEG at the LaAlO3/SrTiO3 heterointerface remains largely unexplored. Here, we use different lattice constant single crystal substrates to produce LaAlO3/SrTiO3 interfaces with controlled levels of biaxial epitaxial strain. We have found that tensile strained SrTiO3 destroys the conducting 2DEG, while compressively strained SrTiO3 retains the 2DEG, but with a carrier concentration reduced in comparison to the unstrained LaAlO3/SrTiO3 interface. We have also found that the critical LaAlO3 overlayer thickness for 2DEG formation increases with SrTiO3 compressive strain. Our first-principles calculations suggest that a strain-induced electric polarization in the SrTiO3 layer is responsible for this behavior. It is directed away from the interface and hence creates a negative polarization charge opposing that of the polar LaAlO3 layer. This both increases the critical thickness of the LaAlO3 layer, and reduces carrier concentration above the critical thickness, in agreement with our experimental results. Our findings suggest that epitaxial strain can be used to tailor 2DEGs properties of the LaAlO3/SrTiO3 heterointerface.
155 - A. Dubroka , M. Roessle , K.W. Kim 2009
With infrared ellipsometry and transport measurements we investigated the electrons at the interface between LaAlO3 and SrTiO3. We obtained a sheet carrier density of Ns~5-9x 10E13 cm^-2, an effective mass of m*~3m_e, and a strongly frequency dependent mobility. The latter are similar as in bulk SrTi1-xNbxO3 and therefore suggestive of polaronic correlations of the confined carriers. We also determined the vertical density profile which has a strongly asymmetric shape with a rapid initial decay over the first 2 nm and a pronounced tail that extends to about 11 nm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا