We have successfully observed quantum oscillation (QO) for FeTe_{1-x}Se_{x}. QO measurements were performed using non-superconducting and superconducting thin crystals of FeTe_{0.65}Se_{0.35} fabricated by the scotch-tape method. We show that the Fermi surfaces (FS) of the non-superconducting crystal are in good agreement with the rigid band shift model based on electron doping by excess Fe while that of the superconducting crystal is in good agreement with the calculated FS with no shift. From the FS comparison of both crystals, we demonstrate the change of the cross-sectional area of the FS, suggesting that the suppression of the FS nesting with the vector Q_{s} = (pi, pi) due to excess Fe results in the disappearance of the superconductivity.