No Arabic abstract
Supergroups are defined in the framework of $dZ_2$-graded Clifford algebras over the fields of real and complex numbers, respectively. It is shown that cyclic structures of complex and real supergroups are defined by Brauer-Wall groups related with the modulo 2 and modulo 8 periodicities of the complex and real Clifford algebras. Particle (fermionic and bosonic) representations of a universal covering (spinor group $spin_+(1,3)$) of the proper orthochronous Lorentz group are constructed via the Clifford algebra formalism. Complex and real supergroups are defined on the representation system of $spin_+(1,3)$. It is shown that a cyclic (modulo 2) structure of the complex supergroup is equivalent to a supersymmetric action, that is, it converts fermionic representations into bosonic representations and vice versa. The cyclic action of the real supergroup leads to a much more high-graded symmetry related with the modulo 8 periodicity of the real Clifford algebras. This symmetry acts on the system of real representations of $spin_+(1,3)$.
We carry out a systematic study of the bounds that can be set on Planck-scale deformations of relativistic symmetries and CPT from precision measurements of particle and antiparticle lifetimes. Elaborating on our earlier work [1] we discuss a new form of departure from CPT invariance linked to the possibility of a non-trivial geometry of four-momentum and its consequences for the particle and antiparticle mass-shells and decay probabilities. Our main result is a collection of experimental bounds that can be obtained for the deformation parameter of the theoretical model under consideration based on current data and sensitivities of planned experiments at high energies.
We give conditions for unitarizability of Harish-Chandra super modules for Lie supergroups and superalgebras.
In which is developed a new form of superselection sectors of topological origin. By that it is meant a new investigation that includes several extensions of the traditional framework of Doplicher, Haag and Roberts in local quantum theories. At first we generalize the notion of representations of nets of C*-algebras, then we provide a brand new view on selection criteria by adopting one with a strong topological flavour. We prove that it is coherent with the older point of view, hence a clue to a genuine extension. In this light, we extend Roberts cohomological analysis to the case where 1--cocycles bear non trivial unitary representations of the fundamental group of the spacetime, equivalently of its Cauchy surface in case of global hyperbolicity. A crucial tool is a notion of group von Neumann algebras generated by the 1-cocycles evaluated on loops over fixed regions. One proves that these group von Neumann algebras are localized at the bounded region where loops start and end and to be factorial of finite type I. All that amounts to a new invariant, in a topological sense, which can be defined as the dimension of the factor. We prove that any 1-cocycle can be factorized into a part that contains only the charge content and another where only the topological information is stored. This second part resembles much what in literature are known as geometric phases. Indeed, by the very geometrical origin of the 1-cocycles that we discuss in the paper, they are essential tools in the theory of net bundles, and the topological part is related to their holonomy content. At the end we prove the existence of net representations.
After a brief exposition of the simplest class of affine theories of gravity in multidimensional space-times with symmetric connections, we consider the spherical and cylindrical reductions of these theories to two-dimensional dilaton-vecton gravity (DVG) field theories. The distinctive feature of these theories is the presence of a massive/tachyonic vector field (vecton) with essentially nonlinear coupling to the dilaton gravity. In the massless limit, the classical DVG theory can be exactly solved for a rather general coupling depending only on the field tensor and the dilaton. We show that the vecton field can be consistently replaced by a new effectively massive scalar field (scalaron) with an unusual coupling to dilaton gravity (DSG). Then we concentrate on considering the DVG models derived by reductions of D=3 and D=4 affine theories. In particular, we introduce the most general cylindrical reductions that are often ignored. The main subject of our study is the static solutions with horizons. We formulate the general conditions for the existence of the regular horizons and find the solutions of the static DVG/DSG near the horizons in the form of locally convergent power - series expansion. For an arbitrary regular horizon, we find a local generalization of the Szekeres - Kruskal coordinates. Finally, we consider one-dimensional integrable and nonintegrable DSG theories with one scalar. We analyze simplest models having three or two integrals of motion, respectively, and introduce the idea of a `topological portrait giving a unified qualitative description of static and cosmological solutions of some simple DSG models.
$CPT$ groups for spinor fields in de Sitter and anti-de Sitter spaces are defined in the framework of automorphism groups of Clifford algebras. It is shown that de Sitter spaces with mutually opposite signatures correspond to Clifford algebras with different algebraic structure that induces an essential difference of $CPT$ groups associated with these spaces. $CPT$ groups for charged particles are considered with respect to phase factors on the various spinor spaces related with real subalgebras of the simple Clifford algebra over the complex field (Dirac algebra). It is shown that $CPT$ groups for neutral particles which admit particle-antiparticle interchange and $CPT$ groups for truly neutral particles are described within semisimple Clifford algebras with quaternionic and real division rings, respectively. A difference between bosonic and fermionic $CPT$ groups is discussed.