Interferometry using Adiabatic Passage in Dilute Gas Bose-Einstein Condensates


Abstract in English

We theoretically examine three-well interferometry in Bose-Einstein condensates using adiabatic passage. Specifically, we demonstrate that a fractional coherent transport adiabatic passage protocol enables stable spatial splitting in the presence of nonlinear interactions. A reversal of this protocol produces a coherent recombination of the BEC with a phase-dependent population of the three wells. The effect of nonlinear interactions on the interferometric measurement is quantified and found to lead to an enhancement in sensitivity for moderate interaction strengths.

Download