Do you want to publish a course? Click here

Bipolar jets launched from magnetically diffusive accretion disks. I. Ejection efficiency vs field strength and diffusivity

143   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the launching of jets and outflows from magnetically diffusive accretion disks. Using the PLUTO code we solve the time-dependent resistive MHD equations taking into account the disk and jet evolution simultaneously. The main question we address is which kind of disks do launch jets and which kind of disks do not? In particular, we study how the magnitude and distribution of the (turbulent) magnetic diffusivity affect mass loading and jet acceleration. We have applied a turbulent magnetic diffusivity based on alpha-prescription, but have also investigate examples where the scale height of diffusivity is larger than that of the disk gas pressure. We further investigate how the ejection efficiency is governed by the magnetic field strength. Our simulations last for up to 5000 dynamical time scales corresponding to 900 orbital periods of the inner disk. As a general result we observe a continuous and robust outflow launched from the inner part of the disk, expanding into a collimated jet of super fast magneto-sonic speed. For long time scales the disk internal dynamics changes, as due to outflow ejection and disk accretion the disk mass decreases. For magneto-centrifugally driven jets we find that for i) less diffusive disks, ii) a stronger magnetic field, iii) a low poloidal diffusivity, or a iv) lower numerical diffusivity (resolution), the mass loading of the outflow is increased - resulting in more powerful jets with high mass flux. For weak magnetization the (weak) outflow is driven by the magnetic pressure gradient. We further investigate the jet asymptotic velocity and the jet rotational velocity in respect of the different launching scenarios. We find a lower degree of jet collimation than previous studies, most probably due to our revised outflow boundary condition.



rate research

Read More

Several active galactic nuclei and microquasars are observed to eject plasmoids that move at relativistic speeds. We envisage the plasmoids as pre-existing current carrying magnetic flux ropes that were initially anchored in the accretion disk-corona. The plasmoids are ejected outwards via a mechanism called the toroidal instability (TI). The TI, which was originally explored in the context of laboratory tokamak plasmas, has been very successful in explaining coronal mass ejections from the Sun. Our model predictions for plasmoid trajectories compare favorably with a representative set of multi-epoch observations of radio emitting knots from the radio galaxy 3C120, which were preceded by dips in Xray intensity.
The radiative efficiency of super-Eddington accreting black holes (BHs) is explored for magnetically-arrested disks (MADs), where magnetic flux builds-up to saturation near the BH. Our three-dimensional general relativistic radiation magnetohydrodynamic (GRRMHD) simulation of a spinning BH (spin $a/M=0.8$) accreting at $sim 50$ times Eddington shows a total efficiency $sim 50%$ when time-averaged and total efficiency $gtrsim 100%$ in moments. Magnetic compression by the magnetic flux near the rotating BH leads to a thin disk, whose radiation escapes via advection by a magnetized wind and via transport through a low-density channel created by a Blandford-Znajek (BZ) jet. The BZ efficiency is sub-optimal due to inertial loading of field lines by optically thick radiation, leading to BZ efficiency $sim 40%$ on the horizon and BZ efficiency $sim 5%$ by $rsim 400r_g$ (gravitational radii) via absorption by the wind. Importantly, radiation escapes at $rsim 400r_g$ with efficiency $etaapprox 15%$ (luminosity $Lsim 50L_{rm Edd}$), similar to $etaapprox 12%$ for a Novikov-Thorne thin disk and beyond $etalesssim 1%$ seen in prior GRRMHD simulations or slim disk theory. Our simulations show how BH spin, magnetic field, and jet mass-loading affect the radiative and jet efficiencies of super-Eddington accretion.
The exact time-dependent solution is obtained for a magnetic field growth during a spherically symmetric accretion into a black hole (BH) with a Schwarzschild metric. Magnetic field is increasing with time, changing from the initially uniform into a quasi-radial field. Equipartition between magnetic and kinetic energies in the falling gas is established in the developed stages of the flow. Estimates of the synchrotron radiation intensity are presented for the stationary flow. The main part of the radiation is formed in the region $r leq 7 r_g$, here $r_g$ is a BH gravitational radius. The two-dimensional stationary self-similar magnetohydrodynamic solution is obtained for the matter accretion into BH, in a presence of a large-scale magnetic field, when the magnetic field far from the BH is homogeneous and does not influence the flow. At the symmetry plane perpendicular to the direction of the distant magnetic field, the quasi-stationary disk is formed around BH, which structure is determined by dissipation processes. Parameters of the shock forming due to matter infall onto the disk are obtained. The radiation spectrum of the disk and the shock are obtained for the $10,, M_odot$ BH. The luminosity of such object is about the solar one, for a characteristic galactic gas density, with possibility of observation at distances less than 1 kpc. The spectra of a laminar and a turbulent disk structure around BH are very different. The turbulent disk emits a large part of its flux in the infrared. It may occur that some of the galactic infrared star-like sources are a single BH in the turbulent accretion state. The radiative efficiency of the magnetized disk is very high, reaching $sim 0.5,dot M,c^2$ so it was called recently as a magnetically arrested disk (MAD). Numerical simulations of MAD, and its appearance during accretion into neutron stars are considered and discussed.
The radiative and jet efficiencies of thin magnetized accretion disks around black holes (BHs) are affected by BH spin and the presence of a magnetic field that, when strong, could lead to large deviations from Novikov-Thorne (NT) thin disk theory. To seek the maximum deviations, we perform general relativistic magnetohydrodynamic (GRMHD) simulations of radiatively efficient thin (half-height $H$ to radius $R$ of $H/Rapprox 0.10$) disks around moderately rotating BHs with $a/M=0.5$. First, our simulations, each evolved for more than $70,000r_g/c$ (gravitational radius $r_g$ and speed of light $c$), show that large-scale magnetic field readily accretes inward even through our thin disk and builds-up to the magnetically-arrested disk (MAD) state. Second, our simulations of thin MADs show the disk achieves a radiative efficiency of $eta_{rm r}approx 15%$ (after estimating photon capture), which is about twice the NT value of $eta_{rm r}sim 8%$ for $a/M=0.5$ and gives the same luminosity as a NT disk with $a/Mapprox 0.9$. Compared to prior simulations with $lesssim 10%$ deviations, our result of an $approx 80%$ deviation sets a new benchmark. Building on prior work, we are now able to complete an important scaling law which suggest that observed jet quenching in the high-soft state in BH X-ray binaries is consistent with an ever-present MAD state with a weak yet sustained jet.
288 - J. M. Miller 2009
Disk accretion may be the fundamental astrophysical process. Stars and planets form through the accretion of gas in a disk. Black holes and galaxies co-evolve through efficient disk accretion onto the central supermassive black hole. Indeed, approximately 20 percent of the ionizing radiation in the universe is supplied by disk accretion onto black holes. And large-scale structures - galaxy clusters - are dramatically affected by the relativistic jets that result from accretion onto black holes. Yet, we are still searching for observational answers to some very basic questions that underlie all aspects of the feedback between black holes and their host galaxies: How do disks transfer angular momentum to deliver gas onto compact objects? How do accretion disks launch winds and jets?
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا