No Arabic abstract
Liquid free cryogenic devices are acquiring importance in basic science and engineering. But they can also lead to improvements in teaching low temperature an solid state physics to graduate students and specialists. Most of the devices are relatively expensive, but small sized equipment is slowly becoming available. Here, we have designed several simple experiments which can be performed using a small Stirling refrigerator. We discuss the measurement of the critical current and temperature of a bulk YBa2Cu3O(7-d) (YBCO) sample, the observation of the levitation of a magnet over a YBCO disk when cooled below the critical temperature and the observation of a phase transition using ac calorimetry. The equipment can be easily handled by students, and also used to teach the principles of liquid free cooling.
Microwave experiments in dilution refrigerators are a central tool in the field of superconducting quantum circuits and other research areas. This type of experiments relied so far on attaching a device to the mixing chamber of a dilution refrigerator. The minimum turnaround time in this case is a few days as required by cooling down and warming up the entire refrigerator. We developed a new approach, in which a suitable sample holder is attached to a cold-insertable probe and brought in contact with transmission lines permanently mounted inside the cryostat. The total turnaround time is 8 hours if the target temperature is 80 mK. The lowest attainable temperature is 30 mK. Our system can accommodate up to six transmission lines, with a measurement bandwidth tested between DC and 12 GHz. This bandwidth is limited by low pass components in the setup; we expect the intrinsic bandwidth to be at least 18 GHz. We present our setup, discuss the experimental procedure, and give examples of experiments enabled by this system. This new measurement method will have a major impact on systematic ultra-low temperature studies using microwave signals, including those requiring quantum coherence.
Although solid helium-4 (4He) may be a supersolid it also exhibits many phenomena unexpected in that context. We studied relaxation dynamics in the resonance frequency f(T) and dissipation D(T) of a torsional oscillator containing solid 4He. With the appearance of the supersolid state, the relaxation times within f(T) and D(T) began to increase rapidly together. More importantly, the relaxation processes in both D(T) and a component of f(T) exhibited a complex synchronized ultraslow evolution towards equilibrium. Analysis using a generalized rotational susceptibility revealed that, while exhibiting these apparently glassy dynamics, the phenomena were quantitatively inconsistent with a simple excitation freeze-out transition because the variation in f was far too large. One possibility is that amorphous solid 4He represents a new form of supersolid in which dynamical excitations within the solid control the superfluid phase stiffness.
Developing a packaging scheme that meets all of the requirements for operation of solid-state qubits in a cryogenic environment can be a formidable challenge. In this article, we discuss work being done in our group as well as in the broader community, focusing on the role of 3D integration and packaging in quantum processing with solid-state qubits.
Josephson junction arrays can be used as quantum channels to transfer quantum information between distant sites. In this work we discuss simple protocols to realize state transfer with high fidelity. The channels do not require complicate gating but use the natural dynamics of a properly designed array. We investigate the influence of static disorder both in the Josephson energies and in the coupling to the background gate charges, as well as the effect of dynamical noise. We also analyze the readout process, and its backaction on the state transfer.
Projective measurements are a powerful tool for manipulating quantum states. In particular, a set of qubits can be entangled by measurement of a joint property such as qubit parity. These joint measurements do not require a direct interaction between qubits and therefore provide a unique resource for quantum information processing with well-isolated qubits. Numerous schemes for entanglement-by-measurement of solid-state qubits have been proposed, but the demanding experimental requirements have so far hindered implementations. Here we realize a two-qubit parity measurement on nuclear spins in diamond by exploiting the electron spin of a nitrogen-vacancy center as readout ancilla. The measurement enables us to project the initially uncorrelated nuclear spins into maximally entangled states. By combining this entanglement with high-fidelity single-shot readout we demonstrate the first violation of Bells inequality with solid-state spins. These results open the door to a new class of experiments in which projective measurements are used to create, protect and manipulate entanglement between solid-state qubits.