No Arabic abstract
We compare and analyze the Spitzer mid-infrared spectrum of three fullerene-rich planetary nebulae in the Milky Way and the Magellanic Clouds; Tc1, SMP SMC16, and SMP LMC56. The three planetary nebulae share many spectroscopic similarities. The strongest circumstellar emission bands correspond to the infrared active vibrational modes of the fullerene species C60 and little or no emission is present from Polycyclic Aromatic Hydrocarbons (PAHs). The strength of the fullerene bands in the three planetary nebulae is very similar, while the ratio of the [NeIII]15.5um/[NeII]12.8um fine structure lines, an indicator of the strength of the radiation field, is markedly different. This raises questions about their excitation mechanism and we compare the fullerene emission to fluorescent and thermal models. In addition, the spectra show other interesting and common features, most notably in the 6-9um region, where a broad plateau with substructure dominates the emission. These features have previously been associated with mixtures of aromatic/aliphatic hydrocarbon solids. We hypothesize on the origin of this band, which is likely related to the fullerene formation mechanism, and compare it with modeled Hydrogenated Amorphous Carbon that present emission in this region.
Fullerenes have recently been identified in space and they may play a significant role in the gas and dust budget of various astrophysical objects including planetary nebulae (PNe), reflection nebulae (RNe) and H II regions. The tenuous nature of the gas in these environments precludes the formation of fullerene materials following known vaporization or combustion synthesis routes even on astronomical timescales. We have studied the processing of hydrogenated amorphous carbon (a-C:H or HAC) nano-particles and their specific derivative structures, which we name arophatics, in the circumstellar environments of young, carbon-rich PNe. We find that UV-irradiation of such particles can result in the formation of fullerenes, consistent with the known physical conditions in PNe and with available timescales.
[Abridged] Fullerenes have been recently detected in various circumstellar and interstellar environments, raising the question of their formation pathway. It has been proposed that they can form by the photo-chemical processing of large polycyclic aromatic hydrocarbons (PAHs). Following our previous work on the evolution of PAHs in the NGC 7023 reflection nebula, we evaluate, using photochemical modeling, the possibility that the PAH C$_{66}$H$_{20}$ (i.e. circumovalene) can lead to the formation of C$_{60}$ upon irradiation by ultraviolet photons. The chemical pathway involves full dehydrogenation, folding into a floppy closed cage and shrinking of the cage by loss of C$_2$ units until it reaches the symmetric C$_{60}$ molecule. At 10 from the illuminating star and with realistic molecular parameters, the model predicts that 100% of C$_{66}$H$_{20}$ is converted into C$_{60}$ in $sim$ 10$^5$ years, a timescale comparable to the age of the nebula. Shrinking appears to be the kinetically limiting step of the whole process. Hence, PAHs larger than C$_{66}$H$_{20}$ are unlikely to contribute significantly to the formation of C$_{60}$, while PAHs containing between 60 and 66 C atoms should contribute to the formation of C$_{60}$ with shorter timescales, and PAHs containing less than 60 C atoms will be destroyed. Assuming a classical size distribution for the PAH precursors, our model predicts absolute abundances of C$_{60}$ are up to several $10^{-4}$ of the elemental carbon, i.e. less than a percent of the typical interstellar PAH abundance, which is consistent with observational studies. According to our model, once formed, C$_{60}$ can survive much longer than other fullerenes because of the remarkable stability of the C$_{60}$ molecule at high internal energies.Hence, a natural consequence is that C$_{60}$ is more abundant than other fullerenes in highly irradiated environments.
In 1985, During experiments aimed at understanding the mechanisms by which long-chain carbon molecules are formed in interstellar space and circumstellar shells, Harry Kroto and his collaborators serendipitously discovered a new form of carbon: fullerenes. The most emblematic fullerene (i.e. C$_{60}$ buckminsterfullerene), contains exactly 60 carbon atoms organized in a cage-like structure similar to a soccer ball. Since their discovery impacted the field of nanotechnologies, Kroto and colleagues received the Nobel prize in 1996. The cage-like structure, common to all fullerene molecules, gives them unique properties, in particular an extraordinary stability. For this reason and since they were discovered in experiments aimed to reproduce conditions in space, fullerenes were sought after by astronomers for over two decades, and it is only recently that they have been firmly identified by spectroscopy, in evolved stars and in the interstellar medium. This identification offers the opportunity to study the molecular physics of fullerenes in the unique physical conditions provided by space, and to make the link with other large carbonaceous molecules thought to be present in space : polycyclic aromatic hydrocarbons.
Abridged. The 12CO/13CO ratio in the circumstellar envelope (CSE) of asymptotic giant branch (AGB) stars has been extensively used as the tracer of the photospheric 12C/13C ratio. However, spatially-resolved ALMA observations of R Scl, a carbon rich AGB star, have shown that the 12CO/13CO ratio is not consistent over the entire CSE. Hence, it can not necessarily be used as a tracer of the 12C/13C ratio. The most likely hypothesis to explain the observed discrepancy between the 12CO/13CO and 12C/13C ratios is CO isotopologue selective photodissociation by UV radiation. Unlike the CO isotopologue ratio, the HCN isotopologue ratio is not affected by UV radiation. Therefore, HCN isotopologue ratios can be used as the tracer of the atomic C ratio in UV irradiated regions. We have performed a detailed non-LTE excitation analysis of circumstellar H12CN and H13CN line emission around R Scl, observed with ALMA and APEX, using a radiative transfer code, ALI. The spatial extent of the molecular distribution for both isotopologues is constrained based on the spatially resolved H13CN(4-3) ALMA observations. We find fractional abundances of H12CN/H2 = (5.0 +- 2.0) x 10^{-5} and H13CN/H2 = (1.9 +- 0.4) x 10^{-6} in the inner wind (r < (2.0 +- 0.25) x 10^{15} cm) of R Scl. The derived circumstellar isotopologue ratio of H12CN/H13CN = 26.3 +- 11.9 is consistent with the photospheric ratio of 12C/13C ~ 19 pm 6. We show that the circumstellar H12CN/H13CN ratio traces the photospheric 12C/13C ratio. These results support the previously proposed explanation that CO isotopologue selective-shielding is the main factor responsible for the observed discrepancy between 12C/13C and 12CO/13CO ratios in the inner CSE of R Scl. This indicates that UV radiation impacts on the CO isotopologue ratio.
We present results of long-slit and panoramic spectroscopy of extended gaseous disks in 18 nearby S0 galaxies, mostly in groups. The gas in our S0s is found to be often accreted from outside that is implied by its decoupled kinematics: at least 5 galaxies demonstrate strongly inclined large-scale ionized-gas disks smoothly coupled with their outer HI disks, 7 galaxies reveal circumnuclear polar ionized-gas disks, and in NGC 2551 the ionized gas though confined to the main galactic plane however counterrotates the stellar component. The ionized-gas excitation analysis reveals the gas ionization by young stars in 12 of 18 S0 galaxies studied here; the current star formation in these galaxies is confined to the ring-like zones coinciding with the UV-rings. The gas oxygen abundance estimates in the rings are closely concentrated around the value of 0.7 $Z_odot$ and do not correlate either with the ring radius nor with the metallicity of the underlying stellar population. By applying the tilted-ring analysis to the 2D velocity fields of the ionized gas, we have traced the orientation of the gas rotation-plane lines of nodes along the radius. We have found that current star formation proceeds usually just where the gas lies strictly in the stellar disk planes and rotates there circularly; the sense of the gas rotation does not matter (the counterrotating gas in NGC 2551 form stars currently). In the galaxies without signs of current star formation the extended gaseous disks are either in steady-state quasi-polar orientation (NGC 2655, NGC 2787, NGC 3414, UGC 9519), or are acquired recently through the highly inclined external filaments provoking probably shock-like excitation (NGC 4026, NGC 7280). Our data imply crucial difference of the external-gas accretion regime in S0s with respect to spiral galaxies: the geometry of the gas accretion in S0s is typically off-plane.