Do you want to publish a course? Click here

Very Large Array Detection of the 36 GHz Zeeman Effect in DR21W Revisited

135   0   0.0 ( 0 )
 Added by Emmanuel Momjian
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the observation of the 36 GHz methanol maser line in the star forming region DR21W to accurately measure the Zeeman effect. The reported Zeeman signature by Fish et al. (2011) became suspicious after an instrumental effect was discovered in the early days of the Very Large Array Wide-band Digital Architecture (WIDAR) correlator commissioning. We conclude that the previously reported magnetic field strength of 58 mG ((1.7 Hz/mG)/z) is instrumental in nature and thus incorrect. With the improved performance of the array, we now deduce a 3 sigma limit of -4.7 to +0.4 mG ((1.7 Hz/mG)/z) for the line-of-sight component of the magnetic field strength in DR21W.



rate research

Read More

We report the detection of the Zeeman effect in the 44 GHz Class I methanol maser line toward the high mass star forming region DR21W. There are two prominent maser spots in DR21W at the ends of a northwest-southeast linear arrangement. For the maser at the northwestern end (maser A), we fit three Gaussian components. In the strongest component, we obtain a significant Zeeman detection, with $zB_{rm los}=-23.4pm3.2$ Hz. If we use $z=-0.920$ Hz mG$^{-1}$ for the $F=5 rightarrow 4$ hyperfine transition, this corresponds to a magnetic field $|B_{rm los}|=25.4$ mG; $B_{rm los}$ would be higher if a different hyperfine was responsible for the 44 GHz maser, but our results also rule out some hyperfines, since fields in these regions cannot be hundreds of mG. Class I methanol masers form in outflows where shocks compress magnetic fields in proportion to gas density. Designating our detected $B_{rm los}=25$ mG as the magnetic field in the post-shock gas, we find that $B_{rm los}$ in the pre-shock gas should be 0.1-0.8 mG. Although there are no thermal-line Zeeman detections toward DR21W, such values are in good agreement with Zeeman measurements in the CN thermal line of 0.36 and 0.71 mG about $3.5$ away in DR21(OH) in gas of comparable density to the pre-shock gas density in DR21W. Comparison of our derived magnetic energy density to the kinetic energy density in DR21W indicates that magnetic fields likely play a significant role in shaping the dynamics of the post-shocked gas in DR21W.
Radio relics are elongated sources related to shocks driven by galaxy cluster merger events. Although these objects are highly polarized at GHz frequencies ($gtrsim 20%$), high-resolution studies of their polarization properties are still lacking. We present the first high-resolution and high-sensitivity polarimetry study of the merging galaxy cluster CIZA J2242.8+5301 in the 1-4 GHz frequency band. We use the $QU$-fitting approach to model the Stokes $I$, $Q$ and $U$ emission, obtaining best-fit intrinsic polarization fraction ($p_0$), intrinsic polarization angle ($chi_0$), Rotation Measure (RM) and wavelength-dependent depolarization ($sigma_{rm RM}$) maps of the cluster. Our analysis focuses on the northern relic (RN). For the first time in a radio relic, we observe a decreasing polarization fraction in the downstream region. Our findings are possibly explained by geometrical projections and/or by decreasing of the magnetic field anisotropy towards the cluster center. From the amount of depolarization of the only detected background radio galaxy, we estimate a turbulent magnetic field strength of $B_{rm turb}sim5.6~mu$Gauss in the relic. Finally, we observe Rotation Measure fluctuations of about 30 rad m$^{-2}$ around at the median value of 140.8 rad m$^{-2}$ at the relic position.
We have combined spectrosopic and photometric data from the Sloan Digital Sky Survey (SDSS) with $1.4$ GHz radio observations, conducted as part of the Stripe 82 $1-2$ GHz Snapshot Survey using the Karl G. Jansky Very Large Array (VLA), which covers $sim100$ sq degrees, to a flux limit of 88 $mu$Jy rms. Cross-matching the $11,768$ radio source components with optical data via visual inspection results in a final sample of $4,795$ cross-matched objects, of which $1,996$ have spectroscopic redshifts and $2,799$ objects have photometric redshifts. Three previously undiscovered Giant Radio Galaxies (GRGs) were found during the cross-matching process, which would have been missed using automated techniques. For the objects with spectroscopy we separate radio-loud Active Galactic Nuclei (AGN) and star-forming galaxies (SFGs) using three diagnostics and then further divide our radio-loud AGN into the HERG and LERG populations. A control matched sample of HERGs and LERGs, matched on stellar mass, redshift and radio luminosity, reveals that the host galaxies of LERGs are redder and more concentrated than HERGs. By combining with near-infrared data, we demonstrate that LERGs also follow a tight $K-z$ relationship. These results imply the LERG population are hosted by population of massive, passively evolving early-type galaxies. We go on to show that HERGs, LERGs, QSOs and star-forming galaxies in our sample all reside in different regions of a WISE colour-colour diagram. This cross-matched sample bridges the gap between previous `wide but shallow and `deep but narrow samples and will be useful for a number of future investigations.
244 - Simon Ellingsen 2014
We have used the Australia Telescope Compact Array (ATCA) to search for emission from the $4_{-1} rightarrow 3_{0}E$ transition of methanol (36.2 GHz) towards the center of the nearby starburst galaxy NGC253. Two regions of emission were detected, offset from the nucleus along the same position angle as the inner spiral arms. The emission is largely unresolved on a scale of 5 arcsec, has a full-width half maximum (FWHM) line width of < 30 km s$^{-1}$, and an isotropic luminosity orders of magnitude larger than that observed in any Galactic star formation regions. These characteristics suggest that the 36.2 GHz methanol emission is most likely a maser, although observations with higher angular and spectral resolution are required to confirm this. If it is a maser this represents the first detection of a class I methanol maser outside the Milky Way. The 36.2 GHz methanol emission in NGC253 has more than an order of magnitude higher isotropic luminosity than the widespread emission recently detected towards the center of the Milky Way. If emission from this transition scales with nuclear star formation rate then it may be detectable in the central regions of many starburst galaxies. Detection of methanol emission in ultra-luminous infra-red galaxies (ULIRGs) would open up a new tool for testing for variations in fundamental constants (in particular the proton-to-electron mass ratio) on cosmological scales.
120 - R. Perley 2009
In almost 30 years of operation, the Very Large Array (VLA) has proved to be a remarkably flexible and productive radio telescope. However, the basic capabilities of the VLA have changed little since it was designed. A major expansion utilizing modern technology is currently underway to improve the capabilities of the VLA by at least an order of magnitude in both sensitivity and in frequency coverage. The primary elements of the Expanded Very Large Array (EVLA) project include new or upgraded receivers for continuous frequency coverage from 1 to 50 GHz, new local oscillator, intermediate frequency, and wide bandwidth data transmission systems to carry signals with 16 GHz total bandwidth from each antenna, and a new digital correlator with the capability to process this bandwidth with an unprecedented number of frequency channels for an imaging array. Also included are a new monitor and control system and new software that will provide telescope ease of use. Scheduled for completion in 2012, the EVLA will provide the world research community with a flexible, powerful, general-purpose telescope to address current and future astronomical issues.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا