Bulk Superconductivity in Bismuth-oxy-sulfide Bi4O4S3


Abstract in English

Very recent report [1] on observation of superconductivity in Bi4O4S3 could potentially reignite the search for superconductivity in a broad range of layered sulphides. We report here synthesis of Bi4O4S3 at 5000C by vacuum encapsulation technique and basic characterizations. Detailed structural, magnetization, and electrical transport results are reported. Bi4O4S3 is contaminated by small amounts of Bi2S3 and Bi impurities. The majority phase is tetragonal I4/mmm space group with lattice parameters a = 3.9697(2){AA}, c = 41.3520(1){AA}. Both AC and DC magnetization measurements confirmed that Bi4O4S3 is a bulk superconductor with superconducting transition temperature (Tc) of 4.4K. Isothermal magnetization (MH) measurements indicated closed loops with clear signatures of flux pinning and irreversible behavior. The lower critical field (Hc1) at 2K, of the new superconductor is found to be ~39 Oe. The magneto-transport R(T, H) measurements showed a resistive broadening and decrease in Tc (R=0) to lower temperatures with increasing magnetic field. The extrapolated upper critical field Hc2(0) is ~ 310kOe with a corresponding Ginzburg-Landau coherence length of ~100{AA} . In the normal state the {rho} ~ T2 is not indicated. Our magnetization and electrical transport measurements substantiate the appearance of bulk superconductivity in as synthesized Bi4O4S3. On the other hand same temperature heat treated Bi is not superconducting, thus excluding possibility of impurity driven superconductivity in the newly discovered Bi4O4S3 superconductor.

Download