Do you want to publish a course? Click here

An inclusive search for the Higgs boson in the four-lepton final state at CDF

214   0   0.0 ( 0 )
 Added by Matteo Bauce
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

An inclusive search for the standard model Higgs boson using the four-lepton final state in proton-antiproton collisions produced by the Tevatron at sqrt(s) = 1.96 TeV is conducted. The data are recorded by the CDF II detector and correspond to an integrated luminosity of 9.7 /fb. Three distinct Higgs decay modes, namely ZZ, WW, and tau-tau, are simultaneously probed. Nine potential signal events are selected and found to be consistent with the background expectation. We set a 95% credibility limit on the production cross section times the branching ratio and subsequent decay to the four lepton final state for hypothetical Higgs boson masses between 120 GeV/c^2 and 300 GeV/c^2.



rate research

Read More

This paper reports the result of a search for the standard model Higgs boson in events containing four reconstructed jets associated with quarks. For masses below 135GeV/c2, Higgs boson decays to bottom-antibottom quark pairs are dominant and result primarily in two hadronic jets. An additional two jets can be produced in the hadronic decay of a W or Z boson produced in association with the Higgs boson, or from the incoming quarks that produced the Higgs boson through the vector-boson fusion process. The search is performed using a sample of sqrt{s} = 1.96 TeV proton-antiproton collisions corresponding to an integrated luminosity of 9.45 fb-1 recorded by the CDF II detector. The data are in agreement with the background model and 95% credibility level upper limits on Higgs boson production are set as a function of the Higgs boson mass. The median expected (observed) limit for a 125GeV/c2 Higgs boson is 11.0 (9.0) times the predicted standard model rate.
We present a search for the standard model Higgs boson production in association with a $W$ boson in proton-antiproton collisions ($pbar{p}rightarrow W^pm H rightarrow ell u bbar{b}$) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector which correspond to an integrated luminosity of approximately 2.7 fb$^{-1}$. We recorded this data with two kinds of triggers. The first kind required high-p$_T$ charged leptons and the second required both missing transverse energy and jets. The search selects events consistent with a signature of a single lepton ($e^pm/mu^pm$), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method and a jet probability tagging method. Kinematic information is fed in an artificial neural network to improve discrimination between signal and background. The search finds that both the observed number of events and the neural network output distributions are consistent with the standard model background expectations, and sets 95% confidence level upper limits on the production cross section times branching ratio. The limits are expressed as a ratio to the standard model production rate. The limits range from 3.6 (4.3 expected) to 61.1 (43.2 expected) for Higgs masses from 100 to 150 GeV/$c^{2}$, respectively.
A search for a narrow Higgs boson resonance in the diphoton mass spectrum is presented based on data corresponding to 7.0 fb^-1 of integrated luminosity from p-pbar collisions at sqrt(s) = 1.96 TeV collected by the CDF experiment. No evidence of such a resonance is observed, and upper limits are set on the cross section times branching ratio of the resonant state as a function of Higgs boson mass. The limits are interpreted in the context of the standard model and one fermiophobic benchmark model where the data exclude fermiophobic Higgs bosons with masses below 114 GeV/c^2 at a 95% Bayesian credibility level.
89 - M.G.Albrow , M.Atac , P.Booth 2005
We propose to add high precision track detectors 55m downstream on both (E&W) sides of CDF, to measure high Feynman-x protons and antiprotons in association with central states. A primary motivation is to search for the Higgs boson, and if it is seen to measure its mass precisely. The track detectors will be silicon strip telescopes backed up by high resolution time-of-flight counters. The addition of these small detectors effectively converts the Tevatron into a gluon-gluon collider with sqrt{s} from 0 to ~ 200 GeV. This experiment will also measure millions/year clean high-|t| elastic scattering events and produce millions of pure gluon jets. Besides a wealth of unique QCD studies we will search for signs of exotic physics such as SUSY and Large Extra Dimensions.
260 - V. Takhistov , K. Abe , Y. Haga 2015
Search results for nucleon decays $p rightarrow e^+X$, $p rightarrow mu^+X$, $n rightarrow ugamma$ (where $X$ is an invisible, massless particle) as well as dinucleon decays $np rightarrow e^+ u$, $np rightarrow mu^+ u$ and $np rightarrow tau^+ u$ in the Super-Kamiokande experiment are presented. Using single-ring data from an exposure of 273.4 kton $cdot$ years, a search for these decays yields a result consistent with no signal. Accordingly, lower limits on the partial lifetimes of $tau_{p rightarrow e^+X} > 7.9 times 10^{32}$ years, $tau_{p rightarrow mu^+X} > 4.1 times 10^{32}$ years, $tau_{n rightarrow ugamma} > 5.5 times 10^{32}$ years, $tau_{np rightarrow e^+ u} > 2.6 times 10^{32}$ years, $tau_{np rightarrow mu^+ u} > 2.2 times 10^{32}$ years and $tau_{np rightarrow tau^+ u} > 2.9 times 10^{31}$ years at a $90 % $ confidence level are obtained. Some of these searches are novel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا