On the complete integrability of a nonlinear oscillator from group theoretical perspective


Abstract in English

In this paper, we investigate the integrability aspects of a physically important nonlinear oscillator which lacks sufficient number of Lie point symmetries but can be integrated by quadrature. We explore the hidden symmetry, construct a second integral and derive the general solution of this oscillator by employing the recently introduced $lambda$-symmetry approach and thereby establish the complete integrability of this nonlinear oscillator equation from a group theoretical perspective.

Download