Do you want to publish a course? Click here

Measurement of the dynamical dipolar coupling in a pair of magnetic nano-disks using a Ferromagnetic Resonance Force Microscope

361   0   0.0 ( 0 )
 Added by Gregoire De Loubens
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform an extensive experimental spectroscopic study of the collective spin-wave dynamics occurring in a pair of magnetic nano-disks coupled by the magneto-dipolar interaction. For this, we take advantage of the stray field gradient produced by the magnetic tip of a ferromagnetic resonance force microscope (f-MRFM) to continuously tune and detune the relative resonance frequencies between two adjacent nano-objects. This reveals the anti-crossing and hybridization of the spin-wave modes in the pair of disks. At the exact tuning, the measured frequency splitting between the binding and anti-binding modes precisely corresponds to the strength of the dynamical dipolar coupling $Omega$. This accurate f-MRFM determination of $Omega$ is measured as a function of the separation between the nano-disks. It agrees quantitatively with calculations of the expected dynamical magneto-dipolar interaction in our sample.



rate research

Read More

Understanding the multiferroic coupling is one of the key issues in the feld of multiferroics. As shown here theoretically, the ferromagnetic resonance (FMR) renders possible an access to the magnetoelectric coupling coefficient in composite multiferroics. This we evidence by a detailed analysis and numerical calculations of FMR in an unstrained chain of BaTiO3 in the tetragonal phase in contact with Fe, including the effect of depolarizing field. The spectra of the absorbed power in FMR are found to be sensitive to the orientation of the interface electric polarization and to an applied static electric field. Here we propose a method for measuring the magnetoelectric coupling coefficient by means of FMR.
We present the design and implementation of a scanning probe microscope, which combines electrically detected magnetic resonance (EDMR) and (photo-)conductive atomic force microscopy ((p)cAFM). The integration of a 3-loop 2-gap X-band microwave resonator into an AFM allows the use of conductive AFM tips as a movable contact for EDMR experiments. The optical readout of the AFM cantilever is based on an infrared laser to avoid disturbances of current measurements by absorption of straylight of the detection laser. Using amorphous silicon thin film samples with varying defect densities, the capability to detect a spatial EDMR contrast is demonstrated. Resonant current changes as low as 20 fA can be detected, allowing the method to realize a spin sensitivity of 8*10^6 spins/Hz^0.5 at room temperature.
127 - Marc Faucher 2009
We present results of Niobium based SQUID magnetometers for which the weak-links are engineered by the local oxidation of thin films using an Atomic Force Microscope (AFM). Firstly, we show that this technique allows the creation of variable thickness bridges with 10 nm lateral resolution. Precise control of the weak-link milling is offered by the possibility to realtime monitor weak-link conductance. Such a process is shown to enhance the magnetic field modulation hence the sensitivity of the magnetometer. Secondly, AFM lithography is used to provide a precise alignment of NanoSQUID weak-links with respect to a ferromagnetic iron dot. The magnetization switching of the near-field coupled particle is studied as a junction of the applied magnetic field direction.
We present a time-resolved measurement of magnetization dynamics during ferromagnetic resonance (FMR) in a single layer of Ni81Fe19. Small-angle (<1 deg.) precession of elemental Ni, Fe moments could be measured directly and quantitatively using time-resolved x-ray magnetic circular dichroism (XMCD) in transmission. The high temporal and rotational sensitivity of of this technique has allowed characterization of the phase and amplitude of driven FMR motion at 2.3 GHz, verifying basic expectations for a driven resonance.
The broadband ferromagnetic resonance measurement using the rectifying effect of Ni81Fe19 wire has been investigated. One wire is deposited on the center strip line of the coplanar waveguide (CPW) and the other one deposited between two strip lines of CPW. The method is based on the detection of the magnetoresistance oscillation due to the magnetization dynamics induced by the radio frequency field. The magnetic field dependences of the resonance frequency and the rectification spectrum are presented and analytically interpreted on the standpoint of a uniform magnetization precession model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا