By considering three different spin models belonging to the generalized voter class for ordering dynamics in two dimensions [I. Dornic, textit{et al.} Phys. Rev. Lett. textbf{87}, 045701 (2001)], we show that they behave differently from the linear voter model when the initial configuration is an unbalanced mixture up and down spins. In particular we show that for nonlinear voter models the exit probability (probability to end with all spins up when starting with an initial fraction $x$ of them) assumes a nontrivial shape. The change is traced back to the strong nonconservation of the average magnetization during the early stages of dynamics. Also the time needed to reach the final consensus state $T_N(x)$ has an anomalous nonuniversal dependence on $x$.