Do you want to publish a course? Click here

Demonstration of an inductively coupled ring trap for cold atoms

177   0   0.0 ( 0 )
 Added by Jonathan Pritchard
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the first demonstration of an inductively coupled magnetic ring trap for cold atoms. A uniform, ac magnetic field is used to induce current in a copper ring, which creates an opposing magnetic field that is time-averaged to produce a smooth cylindrically symmetric ring trap of radius 5 mm. We use a laser-cooled atomic sample to characterise the loading efficiency and adiabaticity of the magnetic potential, achieving a vacuum-limited lifetime in the trap. This technique is suitable for creating scalable toroidal waveguides for applications in matterwave interferometry, offering long interaction times and large enclosed areas.



rate research

Read More

150 - Olivier Morizot 2005
We propose a new kind of toroidal trap, designed for ultracold atoms. It relies on a combination of a magnetic trap for rf-dressed atoms, which creates a bubble-like trap, and a standing wave of light. This new trap is well suited for investigating questions of low dimensionality in a ring potential. We study the trap characteristics for a set of experimentally accessible parameters. A loading procedure from a conventional magnetic trap is also proposed. The flexible nature of this new ring trap, including an adjustable radius and adjustable transverse oscillation frequencies, will allow the study of superfluidity in variable geometries and dimensionalities.
252 - G. Bannasch , T.C. Killian , 2013
We propose and analyze a new scheme to produce ultracold neutral plasmas deep in the strongly coupled regime. The method exploits the interaction blockade between cold atoms excited to high-lying Rydberg states and therefore does not require substantial extensions of current ultracold plasma experiments. Extensive simulations reveal a universal behavior of the resulting Coulomb coupling parameter, providing a direct connection between the physics of strongly correlated Rydberg gases and ultracold plasmas. The approach is shown to reduce currently accessible temperatures by more than an order of magnitude, which opens up a new regime for ultracold plasma research and cold ion-beam applications with readily available experimental techniques.
We propose a trap for cold neutral atoms using a fictitious magnetic field induced by a nanofiber-guided light field. In close analogy to magnetic side-guide wire traps realized with current-carrying wires, a trapping potential can be formed when applying a homogeneous magnetic bias field perpendicular to the fiber axis. We discuss this scheme in detail for laser-cooled cesium atoms and find trap depths and trap frequencies comparable to the two-color nanofiber-based trapping scheme but with one order of magnitude lower powers of the trapping laser field. Moreover, the proposed scheme allows one to bring the atoms closer to the nanofiber surface, thereby enabling efficient optical interfacing of the atoms with additional light fields. Specifically, optical depths per atom, $sigma_0/A_{rm eff}$, of more than 0.4 are predicted, making this system eligible for nanofiber-based nonlinear and quantum optics experiments.
We present an experimental realization of a moving magnetic trap decelerator, where paramagnetic particles entrained in a cold supersonic beam are decelerated in a co-moving magnetic trap. Our method allows for an efficient slowing of both paramagnetic atoms and molecules to near stopping velocities. We show that under realistic conditions we will be able to trap and decelerate a large fraction of the initial supersonic beam. We present our first results on deceleration in a moving magnetic trap by bringing metastable neon atoms to near rest. Our estimated phase space volume occupied by decelerated particles at final velocity of 50 m/s shows an improvement of two orders of magnitude as compared to currently available deceleration techniques.
We present experiments on ensemble cavity quantum electrodynamics with cold potassium atoms in a high-finesse ring cavity. Potassium-39 atoms are cooled in a two-dimensional magneto-optical trap and transferred to a three-dimensional trap which intersects the cavity mode. The apparatus is described in detail and the first observations of strong coupling with potassium atoms are presented. Collective strong coupling of atoms and light is demonstrated via the splitting of the cavity transmission spectrum and the avoided crossing of the normal modes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا