The odd side of torsion geometry


Abstract in English

We introduce and study a notion of `Sasaki with torsion structure (ST) as an odd-dimensional analogue of Kahler with torsion geometry (KT). These are normal almost contact metric manifolds that admit a unique compatible connection with 3-form torsion. Any odd-dimensional compact Lie group is shown to admit such a structure; in this case the structure is left-invariant and has closed torsion form. We illustrate the relation between ST structures and other generalizations of Sasaki geometry, and explain how some standard constructions in Sasaki geometry can be adapted to this setting. In particular, we relate the ST structure to a KT structure on the space of leaves, and show that both the cylinder and the cone over an ST manifold are KT, although only the cylinder behaves well with respect to closedness of the torsion form. Finally, we introduce a notion of `G-moment map. We provide criteria based on equivariant cohomology ensuring the existence of these maps, and then apply them as a tool for reducing ST structures.

Download