Actions of arithmetic groups on homology spheres and acyclic homology manifolds


Abstract in English

We establish lower bounds on the dimensions in which arithmetic groups with torsion can act on acyclic manifolds and homology spheres. The bounds rely on the existence of elementary p-groups in the groups concerned. In some cases, including Sp(2n,Z), the bounds we obtain are sharp: if X is a generalized Z/3-homology sphere of dimension less than 2n-1 or a Z/3-acyclic Z/3-homology manifold of dimension less than 2n, and if n geq 3, then any action of Sp(2n,Z) by homeomorphisms on X is trivial; if n = 2, then every action of Sp(2n,Z) on X factors through the abelianization of Sp(4,Z), which is Z/2.

Download