Quantum algorithm and circuit design solving the Poisson equation


Abstract in English

The Poisson equation occurs in many areas of science and engineering. Here we focus on its numerical solution for an equation in d dimensions. In particular we present a quantum algorithm and a scalable quantum circuit design which approximates the solution of the Poisson equation on a grid with error varepsilon. We assume we are given a supersposition of function evaluations of the right hand side of the Poisson equation. The algorithm produces a quantum state encoding the solution. The number of quantum operations and the number of qubits used by the circuit is almost linear in d and polylog in varepsilon^{-1}. We present quantum circuit modules together with performance guarantees which can be also used for other problems.

Download