Do you want to publish a course? Click here

Luminosity Function of High-Mass X-ray Binaries and Anisotropy in the Distribution of Active Galactic Nuclei toward the Large Magellanic Cloud

266   0   0.0 ( 0 )
 Added by Alexander Lutovinov
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In 2003-2012, the INTEGRAL observatory has performed long-term observations of the Large Magellanic Cloud (LMC). At present, this is one of the deepest hard X-ray (20-60 keV) surveys of extragalactic fields in which more than 20 sources of different natures have been detected. We present the results of a statistical analysis of the population of high-mass X-ray binaries in the LMC and active galactic nuclei (AGNs) observed in its direction. The hard X-ray luminosity function of high-mass X-ray binaries is shown to be described by a power law with a slope alpha~1.8, that in agreement with the luminosity function measurements both in the LMC itself, but made in the soft X-ray energy band, and in other galaxies. At the same time, the number of detected AGNs toward the LMC turns out to be considerably smaller than the number of AGNs registered in other directions, in particular, toward the source 3C 273. The latter confirms the previously made assumption that the distribution of matter in the local Universe is nonuniform.



rate research

Read More

We present the hard-band ($2-10,mathrm{keV}$) X-ray luminosity function (HXLF) of $0.5-2,mathrm{keV}$ band selected AGN at high redshift. We have assembled a sample of 141 AGN at $3<zlesssim5$ from X-ray surveys of different size and depth, in order to sample different regions in the $ L_X - z$ plane. The HXLF is fitted in the range $mathrm{logL_Xsim43-45}$ with standard analytical evolutionary models through a maximum likelihood procedure. The evolution of the HXLF is well described by a pure density evolution, with the AGN space density declining by a factor of $sim10$ from $z=3$ to 5. A luminosity-dependent density evolution model which, normally, best represents the HXLF evolution at lower redshift, is also consistent with the data, but a larger sample of low-luminosity ($mathrm{logL_X}<44$), high-redshift AGN is necessary to constrain this model. We also estimated the intrinsic fraction of AGN obscured by a column density $mathrm{logN_H}geq23$ to be $0.54pm0.05$, with no strong dependence on luminosity. This fraction is higher than the value in the Local Universe, suggesting an evolution of the luminous ($mathrm{L_X>10^{44}mathrm{erg,s^{-1}}}$) obscured AGN fraction from $z=0$ to $z>3$.
The last comprehensive catalogue of high-mass X-ray binaries in the Small Magellanic Cloud (SMC) was published about ten years ago. Since then new such systems were discovered, mainly by X-ray observations with Chandra and XMM-Newton. For the majority of the proposed HMXBs in the SMC no X-ray pulsations were discovered as yet, and unless other properties of the X-ray source and/or the optical counterpart confirm their HMXB nature, they remain only candidate HMXBs. From a literature search we collected a catalogue of 148 confirmed and candidate HMXBs in the SMC and investigated their properties to shed light on their real nature. Based on the sample of well-established HMXBs (the pulsars), we investigated which observed properties are most appropriate for a reliable classification. We defined different levels of confidence for a genuine HMXB based on spectral and temporal characteristics of the X-ray sources and colour-magnitude diagrams from the optical to the infrared of their likely counterparts. We also took the uncertainty in the X-ray position into account. We identify 27 objects that probably are misidentified because they lack an infrared excess of the proposed counterpart. They were mainly X-ray sources with a large positional uncertainty. This is supported by additional information obtained from more recent observations. Our catalogue comprises 121 relatively high-confidence HMXBs (the vast majority with Be companion stars). About half of the objects show X-ray pulsations, while for the rest no pulsations are known as yet. A comparison of the two subsamples suggests that long pulse periods in excess of a few 100 s are expected for the non-pulsars, which are most likely undetected because of aperiodic variability on similar timescales and insufficiently long X-ray observations. (abbreviated)
We combine deep X-ray survey data from the Chandra observatory and the wide-area/shallow XMM-XXL field to estimate the AGN X-ray luminosity function in the redshift range z=3-5. The sample consists of nearly 340 sources with either photometric (212) or spectroscopic (128) redshift in the above range. The combination of deep and shallow survey fields provides a luminosity baseline of three orders of magnitude, Lx(2-10keV)~1e43-1e46erg/s at z>3. We follow a Bayesian approach to determine the binned AGN space density and explore their evolution in a model-independent way. Our methodology accounts for Poisson errors in the determination of X-ray fluxes and uncertainties in photometric redshift estimates. We demonstrate that the latter is essential for unbiased measurement of space densities. We find that the AGN X-ray luminosity function evolves strongly between the redshift intervals z=3-4 and z=4-5. There is also suggestive evidence that the amplitude of this evolution is luminosity dependent. The space density of AGN with Lx<1e45erg/s drops by a factor of 5 between the redshift intervals above, while the evolution of brighter AGN appears to be milder. Comparison of our X-ray luminosity function with that of UV/optical selected QSOs at similar redshifts shows broad agreement at bright luminosities, Lx>1e45erg/s. The faint-end slope of UV/optical luminosity functions however, is steeper than for X-ray selected AGN. This implies that the type-I AGN fraction increases with decreasing luminosity at z>3, opposite to trends established at lower redshift. We also assess the significance of AGN in keeping the hydrogen ionised at high redshift. Our X-ray luminosity function yields ionising photon rate densities that are insufficient to keep the Universe ionised at redshift z>4. A source of uncertainty in this calculation is the escape fraction of UV photons for X-ray selected AGN.
Massive black hole binaries are naturally predicted in the context of the hierarchical model of structure formation. The binaries that manage to lose most of their angular momentum can coalesce to form a single remnant. In the last stages of this process, the holes undergo an extremely loud phase of gravitational wave emission, possibly detectable by current and future probes. The theoretical effort towards obtaining a coherent physical picture of the binary path down to coalescence is still underway. In this paper, for the first time, we take advantage of observational studies of active galactic nuclei evolution to constrain the efficiency of gas-driven binary decay. Under conservative assumptions we find that gas accretion toward the nuclear black holes can efficiently lead binaries of any mass forming at high redshift (> 2) to coalescence within the current time. The observed downsizing trend of the accreting black hole luminosity function further implies that the gas inflow is sufficient to drive light black holes down to coalescence, even if they bind in binaries at lower redshifts, down to z~0.5 for binaries of ~10 million solar masses, and z~0.2 for binaries of ~1 million solar masses. This has strong implications for the detection rates of coalescing black hole binaries of future space-based gravitational wave experiments.
398 - Arash Bodaghee 2021
We present the two-point cross-correlation function between high-mass X-ray binaries (HMXBs) in the Small Magellanic Cloud (SMC) and their likely birthplaces (OB Associations: OBAs). This function compares the spatial correlation between the observed HMXB and OBA populations against mock catalogs in which the members are distributed randomly across the sky. A significant correlation (15 sigma) is found for the HMXB and OBA populations when compared with a randomized catalog in which the OBAs are distributed uniformly over the SMC. A less significant correlation (4 sigma) is found for a randomized catalog of OBAs built with a bootstrap method. However, no significant correlation is detected when the randomized catalogs assume the form of a Gaussian ellipsoid or a distribution that reflects the star-formation history from 40 Myr ago. Based on their observed distributions and assuming a range of migration timescales, we infer that the average value of the kick velocity inherited by an HMXB during the formation of its compact object is 2-34 km/s. This is considerably less than the value obtained for their counterparts in the Milky Way hinting that the galactic environment affecting stellar evolution plays a role in setting the average kick velocity of HMXBs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا