Do you want to publish a course? Click here

FIRST-2MASS Red Quasars: Transitional Objects Emerging from the Dust

236   0   0.0 ( 0 )
 Added by Eilat Glikman
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a sample of 120 dust-reddened quasars identified by matching radio sources detected at 1.4 GHz in the FIRST survey with the near-infrared 2MASS catalog and color-selecting red sources. Optical and/or near-infrared spectroscopy provide broad wavelength sampling of their spectral energy distributions that we use to determine their reddening, characterized by E(B-V). We demonstrate that the reddening in these quasars is best-described by SMC-like dust. This sample spans a wide range in redshift and reddening (0.1 < z < 3, 0.1 < E(B-V) < 1.5), which we use to investigate the possible correlation of luminosity with reddening. At every redshift, dust-reddened quasars are intrinsically the most luminous quasars. We interpret this result in the context of merger-driven quasar/galaxy co-evolution where these reddened quasars are revealing an emergent phase during which the heavily obscured quasar is shedding its cocoon of dust prior to becoming a normal blue quasar. When correcting for extinction, we find that, depending on how the parent population is defined, these red quasars make up < 15-20% of the luminous quasar population. We estimate, based on the fraction of objects in this phase, that its duration is 15-20% as long as the unobscured, blue quasar phase.



rate research

Read More

Some reddened quasars appear to be transitional objects in the merger-induced black hole growth/galaxy evolution paradigm, where a heavily obscured nucleus starts to be unveiled by powerful quasar winds evacuating the surrounding cocoon of dust and gas. Hard X-ray observations are able to peer through this gas and dust, revealing the properties of circumnuclear obscuration. Here, we present NuSTAR and XMM-Newton/Chandra observations of FIRST-2MASS selected red quasars F2M 0830+3759 and F2M 1227+3214. We find that though F2M 0830+3759 is moderately obscured ($N_{rm H,Z} = 2.1pm0.2 times10^{22}$ cm$^{-2}$) and F2M 1227+3214 is mildly absorbed ($N_{rm H,Z} = 3.4^{+0.8}_{-0.7}times10^{21}$ cm$^{-2}$) along the line-of-sight, heavier global obscuration may be present in both sources, with $N_{rm H,S} = 3.7^{+4.1}_{-2.6} times 10^{23}$ cm$^{-2}$ and $< 5.5times10^{23}$ cm$^{-2}$, for F2M 0830+3759 and F2M 1227+3214, respectively. F2M 0830+3759 also has an excess of soft X-ray emission below 1 keV which is well accommodated by a model where 7% of the intrinsic AGN X-ray emission is scattered into the line-of-sight. While F2M 1227+3214 has a dust-to-gas ratio ($E(B-V)$/$N_{rm H}$) consistent with the Galactic value, the $E(B-V)$/$N_{rm H}$ value for F2M 0830+3759 is lower than the Galactic standard, consistent with the paradigm that the dust resides on galactic scales while the X-ray reprocessing gas originates within the dust-sublimation zone of the broad-line-region. The X-ray and 6.1$mu$m luminosities of these red quasars are consistent with the empirical relations derived for high-luminosity, unobscured quasars, extending the parameter space of obscured AGN previously observed by NuSTAR to higher luminosities.
We obtained $XMM-Newton$ observations of two highly luminous dust-reddened quasars, F2M1113+1244 and F2M1656+3821, that appear to be in the early, transitional phase predicted by merger-driven models of quasar/galaxy co-evolution. These sources have been well-studied at optical through mid-infrared wavelengths and are growing relatively rapidly, with Eddington ratios $>30%$. Their black hole masses are relatively small compared to their host galaxies placing them below the $M_{rm BH} - L_{rm bulge}$ relation. We find that for both sources, an absorbed power-law model with $1-3%$ of the intrinsic continuum scattered or leaked back into the line-of-sight best fits their X-ray spectra. We measure the absorbing column density ($N_H$) and constrain the dust-to-gas ratios in these systems, finding that they lie well below the Galactic value. This, combined with the presence of broad emission lines in their optical and near-infrared spectra, suggests that the dust absorption occurs far from the nucleus, in the host galaxy, while the X-rays are mostly absorbed in the nuclear, dust-free region within the sublimation radius. We also compare the quasars absorption-corrected, rest-frame X-ray luminosities ($2-10$ keV) to their rest-frame infrared luminosities (6$mu$m) and find that red quasars, similar to other populations of luminous obscured quasars, are either underluminous in X-rays or overluminous in the infrared.
We present results on a survey to find extremely dust-reddened Type-1 Quasars. Combining the FIRST radio survey, the 2MASS Infrared Survey and the Sloan Digital Sky Survey, we have selected a candidate list of 122 potential red quasars. With more than 80% spectroscopically identified objects, well over 50% are classified as dust-reddened Type 1 quasars, whose reddenings (E(B-V)) range from approximately 0.1 to 1.5 magnitudes. They lie well off the color selection windows usually used to detect quasars and many fall within the stellar locus, which would have made it impossible to find these objects with traditional color selection techniques. The reddenings found are much more consistent with obscuration happening in the host galaxy rather than stemming from the dust torus. We find an unusually high fraction of Broad Absorption Line (BAL) quasars at high redshift, all but one of them belonging to the Low Ionization BAL (LoBAL) class and many also showing absorption the metastable FeII line (FeLoBAL). The discovery of further examples of dust-reddened LoBAL quasars provides more support for the hypothesis that BAL quasars (at least LoBAL quasars) represent an early stage in the lifetime of the quasar. The fact that we see such a high fraction of BALs could indicate that the quasar is in a young phase in which quasar feedback from the BAL winds is suppressing star formation in the host galaxy.
131 - Eilat Glikman 2007
Combining radio observations with optical and infrared color selection -- demonstrated in our pilot study to be an efficient selection algorithm for finding red quasars -- we have obtained optical and infrared spectroscopy for 120 objects in a complete sample of 156 candidates from a sky area of 2716 square degrees. Consistent with our initial results, we find our selection criteria -- J-K>1.7, R-K>4.0 -- yield a ~50% success rate for discovering quasars substantially redder than those found in optical surveys. Comparison with UVX- and optical color-selected samples shows that >~ 10% of the quasars are missed in a magnitude-limited survey. Simultaneous two-frequency radio observations for part of the sample indicate that a synchrotron continuum component is ruled out as a significant contributor to reddening the quasars spectra. We go on to estimate extinctions for our objects assuming their red colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V) values ranging from near zero to 2.5 magnitudes. Correcting the K-band magnitudes for these extinctions, we find that for K <= 14.0, red quasars make up between 25% and 60% of the underlying quasar population; owing to the incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only set a lower limit to the radio-detected red quasar population of >20-30%.
We present the results of a pilot survey to find dust-reddened quasars by matching the FIRST radio catalog to the UKIDSS near-infrared survey, and using optical data from SDSS to select objects with very red colors. The deep K-band limit provided by UKIDSS allows for finding more heavily-reddened quasars at higher redshifts as compared with previous work using FIRST and 2MASS. We selected 87 candidates with K<=17.0 from the UKIDSS Large Area Survey (LAS) First Data Release (DR1) which covers 190 deg2. These candidates reach up to ~1.5 magnitudes below the 2MASS limit and obey the color criteria developed to identify dust-reddened quasars. We have obtained 61 spectroscopic observations in the optical and/or near-infrared as well as classifications in the literature and have identified 14 reddened quasars with E(B-V)>0.1, including three at z>2. We study the infrared properties of the sample using photometry from the WISE Observatory and find that infrared colors improve the efficiency of red quasar selection, removing many contaminants in an infrared-to-optical color-selected sample alone. The highest-redshift quasars (z > 2) are only moderately reddened, with E(B-V) ~ 0.2-0.3. We find that the surface density of red quasars rises sharply with faintness, comprising up to 17% of blue quasars at the same apparent K-band flux limit. We estimate that to reach more heavily reddened quasars (i.e., E(B-V) > 0.5) at z>2 and a depth of K=17 we would need to survey at least ~2.5 times more area.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا