Do you want to publish a course? Click here

Spectral Optical Monitoring of the Narrow Line Seyfert 1 galaxy Ark 564

131   0   0.0 ( 0 )
 Added by Dragana Ili\\'c
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a long-term (1999--2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow line Seyfert 1 (NLS1) galaxies, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted Ha, Hb, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the Hb and Fe II lines with a sum of Gaussian components. We found that during the monitoring period the spectral variation (F_max/F_min) of Ark 564 was between 1.5 for Ha to 1.8 for the Fe II lines. The correlation between the Fe II and Hb flux variations is of higher significance than that of Ha and Hb (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like, and did not change shape during the monitoring period. We investigated, in detail, the optical Fe II emission and found different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad line emission region.



rate research

Read More

We analyse eight XMM-Newton observations of the bright Narrow-Line Seyfert 1 galaxy Arakelian 564 (Ark 564). These observations, separated by ~6 days, allow us to look for correlations between the simultaneous UV emission (from the Optical Monitor) with not only the X-ray flux but also with the different X-ray spectral parameters. The X-ray spectra from all the observations are found to be adequately fitted by a double Comptonization model where the soft excess and the hard X-ray power law are represented by thermal Comptonization in a low temperature plasma and hot corona, respectively. Apart from the fluxes of each component, the hard X-ray power law index is found to be variable. These results suggest that the variability is associated with changes in the geometry of the inner region. The UV emission is found to be variable and well correlated with the high energy index while the correlations with the fluxes of each component are found to be weaker. Using viscous time-scale arguments we rule out the possibility that the UV variation is due to fluctuating accretion rate in the outer disc. If the UV variation is driven by X-ray reprocessing, then our results indicate that the strength of the X-ray reprocessing depends more on the geometry of the X-ray producing inner region rather than on the X-ray luminosity alone.
We present results from a 50 ks observation of the narrow-line Seyfert 1 galaxy Ark 564 with the Chandra HETGS. The spectra above 2 keV are modeled by a power-law with a photon-index of 2.56+/-0.06. We confirm the presence of the soft excess below about 1.5 keV. If we fit the excess with blackbody model, the best-fit temperature is 0.124 keV. Ark 564 has been reported to show a peculiar emission line-like feature at 1 keV in various observations using lower resolution detectors, and the Chandra grating spectroscopy rules out an origin of blends of several narrow emission lines. We detect an edge-like feature at 0.712 keV in the source rest frame. The preferred interpretation of this feature is combination of the O VII K-edge and a number of L-absorption lines from slightly ionized iron, which suggests a warm absorber with ionization parameter xi~1 and N_H ~ 10^21 cm^-2. These properties are roughly consistent with those of the UV absorber. We also detect narrow absorption lines of O VII, O VIII, Ne IX, Ne X, and Mg XI at the systemic velocity. From these lines, a second warm absorber having log xi ~ 2 and N_H ~ 10^21 cm^-2 is required.
55 - S. Vaughan 1999
We present simultaneous ASCA and RXTE observations of Ark 564, the brightest known ``narrow-line Seyfert 1 in the 2-10 keV band. The measured X-ray spectrum is dominated by a steep (Gamma~2.7) power-law continuum extending to at least 20 keV, with imprinted Fe K-line and -edge features and an additional ``soft excess below ~1.5 keV. The energy of the iron K-edge indicates the presence of highly ionised material, which we identify in terms of reflection from a strongly irradiated accretion disc. The high reflectivity of this putative disc, together with its strong intrinsic O VIII Ly-alpha and O VIII recombination emission, can also explain much of the observed soft excess flux. Furthermore, the same spectral model also provides a reasonable match to the very steep 0.1-2 keV spectrum deduced from ROSAT data. The source is much more rapidly variable than ``normal Seyfert 1s of comparable luminosity, increasing by a factor of ~50% in 1.6 hours, with no measurable lag between the 0.5-2 keV and 3-12 keV bands, consistent with much of the soft excess flux arising from reprocessing of the primary power-law component in the inner region of the accretion disc. We note, finally, that if the unusually steep power-law component is a result of Compton cooling of a disc corona by an intense soft photon flux, then the implication is that the bulk of these soft photons lie in the unobserved extreme ultraviolet.
69 - O.Shemmer , P.Romano , R.Bertram 2001
We present the results of a two-year long optical monitoring program of the narrow-line Seyfert 1 galaxy Akn 564. The majority of this monitoring project was also covered by X-ray observations (RXTE) and for a period of ~50 days, we observed the galaxy in UV (HST) and X-rays (RXTE & ASCA) simultaneously with the ground-based observations. Rapid and large-amplitude variations seen in the X-ray band, on a daily and hourly time-scale, were not detected at optical and UV wavelengths, which in turn exhibited much lower variability either on short (one day) or long (several months) time-scales. The only significant optical variations can be described as two 2--4 day events with ~10% flux variations. We detect no significant optical line variations and thus cannot infer a reverberation size for the broad-line region. Similarly, the large X-ray variations seem to vanish when the light curve is smoothed over a period of 30 days. The UV continuum follows the X-rays with a lag of ~0.4 days, and the optical band lags the UV band by ~2 days. No significant correlation was found between the entire X-ray dataset and the optical band. Focusing on a 20-day interval around the strongest optical event we detect a significant X-ray--optical correlation with similar events seen in the UV and X-rays. Our data are consistent with reprocessing models on the grounds of the energy emitted in this single event. However, several large X-ray flares produced no corresponding optical emission.
368 - T.J.Turner , P.Romano , I.M.George 2001
We present a 35 day ASCA observation of the NLS1 Akn 564, which was part of a multiwavelength AGN Watch monitoring campaign. Akn 564 shows a photon index varying across the range 2.45--2.72. The presence of the soft hump component below 1 keV, previously detected in ASCA data, is confirmed. Time-resolved spectroscopy with ~daily sampling reveals a distinction in the variability of the soft hump and power-law components over a timescale of weeks, with the hump varying by a factor of 6 across the 35-day observation compared to a factor 4 in the power-law. Flux variations in the power-law component are measured down to a timescale of ~1000s and accompanying spectral variability suggests the soft hump is not well-correlated with the power-law on such short timescales. We detect Fe Ka and a blend of Fe Kb plus Ni Ka, indicating an origin in highly ionized gas. Variability measurements constrain the bulk of the Fe Ka to originate within a light week of the nucleus. The large EW of the emission lines may be due to high metallicity in NLS1s, supporting some evolutionary models for AGN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا