No Arabic abstract
The Adaptive Optics Lucky Imager (AOLI) is a new instrument under development to demonstrate near diffraction limited imaging in the visible on large ground-based telescopes. We present the adaptive optics system being designed for the instrument comprising a large stroke deformable mirror, fixed component non-linear curvature wavefront sensor and photon-counting EMCCD detectors. We describe the optical design of the wavefront sensor where two photoncounting CCDs provide a total of four reference images. Simulations of the optical characteristics of the system are discussed, with their relevance to low and high order AO systems. The development and optimisation of high-speed wavefront reconstruction algorithms are presented. Finally we discuss the results of simulations to demonstrate the sensitivity of the system.
Increasing interest in astronomical applications of non-linear curvature wavefront sensors for turbulence detection and correction makes it important to understand how best to handle the data they produce, particularly at low light levels. Algorithms for wavefront phase-retrieval from a four-plane curvature wavefront sensor are developed and compared, with a view to their use for low order phase compensation in instruments combining adaptive optics and Lucky Imaging. The convergence speed and quality of iterative algorithms is compared to their step-size and techniques for phase retrieval at low photon counts are explored. Computer simulations show that at low light levels, preprocessing by convolution of the measured signal with a gaussian function can reduce by an order of magnitude the photon flux required for accurate phase retrieval of low-order errors. This facilitates wavefront correction on large telescopes with very faint reference stars.
The mission EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), selected by NASA for technology development, is designed to study the formation, evolution and architectures of exoplanetary systems and characterize circumstellar environments into stellar habitable zones. It is composed of a 0.7 m telescope equipped with a Phase-Induced Amplitude Apodization Coronagraph (PIAA-C) and a 2000-element MEMS deformable mirror, capable of raw contrasts of 1e-6 at 1.2 lambda/D and 1e-7 above 2 lambda/D. One of the key challenges to achieve those contrasts is to remove low-order aberrations, using a Low-Order WaveFront Sensor (LOWFS). An experiment simulating the starlight suppression system is currently developed at NASA Ames Research Center, and includes a LOWFS controlling tip/tilt modes in real time at 500 Hz. The LOWFS allowed us to reduce the tip/tilt disturbances to 1e-3 lambda/D rms, enhancing the previous contrast by a decade, to 8e-7 between 1.2 and 2 lambda/D. A Linear Quadratic Gaussian (LQG) controller is currently implemented to improve even more that result by reducing residual vibrations. This testbed shows that a good knowledge of the low-order disturbances is a key asset for high contrast imaging, whether for real-time control or for post processing.
High-contrast imaging will be a challenge for future ELTs, because their vibrations create low-order aberrations - mostly tip/tilt - that reduce coronagraphic performances at 1.2 lambda/D and above. A Low-Order WaveFront Sensor (LOWFS) is essential to measure and control those aberrations. An experiment simulating a starlight suppression system is currently developed at NASA Ames Research Center, and includes a LOWFS controlling tip/tilt modes in real-time at 500 Hz. The LOWFS allowed us to reduce the tip/tilt disturbances to 1e-3 lambda/D rms, enhancing the previous contrast by a decade, to 8e-7 between 1.2 and 2 lambda/D. A Linear Quadratic Gaussian (LQG) controller is currently implemented to improve even more that result by reducing residual vibrations. This testbed is developed for the mission EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), selected by NASA for technology development, and designed to study the formation, evolution and architectures of exoplanetary systems and characterize circumstellar environments into stellar habitable zones. It is composed of a 0.7 m telescope equipped with a Phase-Induced Amplitude Apodization Coronagraph (PIAA-C) and a 2000-element MEMS deformable mirror, capable of raw contrasts of 1e-6 at 1.2 lambda/D and 1e-7 above 2 lambda/D. Although the testbed simulates space conditions, its LOWFS has the same design than on the SCExAO instrument at Subaru telescope, with whom it shares the same kind of problematic. Experimental results show that a good knowledge of the low-order disturbances is a key asset for high contrast imaging, whether for real-time control or for post processing, both in space and on ground telescopes.
Imaging exo-Earths is an exciting but challenging task because of the 10^-10 contrast ratio between these planets and their host star at separations narrower than 100 mas. Large segmented aperture space telescopes enable the sensitivity needed to observe a large number of planets. Combined with coronagraphs with wavefront control, they present a promising avenue to generate a high-contrast region in the image of an observed star. Another key aspect is the required stability in telescope pointing, focusing, and co-phasing of the segments of the telescope primary mirror for long-exposure observations of rocky planets for several hours to a few days. These wavefront errors should be stable down to a few tens of picometers RMS, requiring a permanent active correction of these errors during the observing sequence. To calibrate these pointing errors and other critical low-order aberrations, we propose a wavefront sensing path based on Zernike phase-contrast methods to analyze the starlight that is filtered out by the coronagraph at the telescope focus. In this work we present the analytical retrieval of the incoming low order aberrations in the starlight beam that is filtered out by an Apodized Pupil Lyot Coronagraph, one of the leading coronagraph types for starlight suppression. We implement this approach numerically for the active control of these aberrations and present an application with our first experimental results on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed, the STScI testbed for Earth-twin observations with future large space observatories, such as LUVOIR and HabEx, two NASA flagship mission concepts.
Dark wavefront sensing takes shape following quantum mechanics concepts in which one is able to see an object in one path of a two-arm interferometer using an as low as desired amount of light actually hitting the occulting object. A theoretical way to achieve such a goal, but in the realm of wavefront sensing, is represented by a combination of two unequal beams interferometer sharing the same incoming light, and whose difference in path length is continuously adjusted in order to show different signals for different signs of the incoming perturbation. Furthermore, in order to obtain this in white light, the path difference should be properly adjusted vs the wavelength used. While we incidentally describe how this could be achieved in a true optomechanical setup, we focus our attention to the simulation of a hypothetical perfect dark wavefront sensor of this kind in which white light compensation is accomplished in a perfect manner and the gain is selectable in a numerical fashion. Although this would represent a sort of idealized dark wavefront sensor that would probably be hard to match in the real glass and metal, it would also give a firm indication of the maximum achievable gain or, in other words, of the prize for achieving such device. Details of how the simulation code works and first numerical results are outlined along with the perspective for an in-depth analysis of the performances and its extension to more realistic situations, including various sources of additional noise.