No Arabic abstract
Core-shell Ge-SixGe1-x nanowires (NWs) are expected to contain large strain fields due to the lattice-mismatch at the core/shell interface. Here we report the measurement of core strain in a NW heterostructure using Raman spectroscopy. We compare the Raman spectra, and the frequency of the Ge-Ge mode measured in individual Ge-Si0.5Ge0.5 core-shell, and bare Ge NWs. We find that the Ge-Ge mode frequency is diameter-independent in GeNWs with a value similar to that of bulk Ge, 300.5 cm-1. On the other hand, Ge-Si0.5Ge0.5 core-shell nanowires reveal a strain-induced blue shift of the Ge-Ge mode, dependent on the relative core and shell thicknesses. Using lattice dynamical theory we determine the strain in the Ge core, and show that the results are in good agreement with values calculated using a continuum elasticity model.
The strain configuration induced by the lattice mismatch in a core-shell nanowire is calculated analytically, taking into account the crystal anisotropy and the difference in stiffness constants of the two materials. The method is applied to nanowires with the wurtzite structure or the zinc-blende structure with the hexagonal / trigonal axis along the nanowire, and the results are compared to available numerical calculations and experimental data. It is also applied to multishell nanowires, and to core-shell nanowires grown along the $<001>$ axis of cubic semiconductors.
Strain engineering in Sn-rich group IV semiconductors is a key enabling factor to exploit the direct band gap at mid-infrared wavelengths. Here, we investigate the effect of strain on the growth of GeSn alloys in a Ge/GeSn core/shell nanowire geometry. Incorporation of Sn content in the 10-20 at.% range is achieved with Ge core diameters ranging from 50nm to 100nm. While the smaller cores lead to the formation of a regular and homogeneous GeSn shell, larger cores lead to the formation of multi-faceted sidewalls and broadened segregation domains, inducing the nucleation of defects. This behavior is rationalized in terms of the different residual strain, as obtained by realistic finite element method simulations. The extended analysis of the strain relaxation as a function of core and shell sizes, in comparison with the conventional planar geometry, provides a deeper understanding of the role of strain in the epitaxy of metastable GeSn semiconductors.
We study theoretically the low-energy phonons and the static strain in cylindrical core/shell nanowires (NWs). Assuming pseudomorphic growth, isotropic media, and a force-free wire surface, we derive algebraic expressions for the dispersion relations, the displacement fields, and the stress and strain components from linear elasticity theory. Our results apply to NWs with arbitrary radii and arbitrary elastic constants for both core and shell. The expressions for the static strain are consistent with experiments, simulations, and previous analytical investigations; those for phonons are consistent with known results for homogeneous NWs. Among other things, we show that the dispersion relations of the torsional, longitudinal, and flexural modes change differently with the relative shell thickness, and we identify new terms in the corresponding strain tensors that are absent for uncapped NWs. We illustrate our results via the example of Ge/Si core/shell NWs and demonstrate that shell-induced strain has large effects on the hole spectrum of these systems.
Recent advances in nanowire synthesis have enabled the realization of crystal phases that in bulk are attainable only under extreme conditions, i.e. high temperature and/or high pressure. For group IV semiconductors this means access to hexagonal-phase SixGe1-x nanostructures (with a 2H type of symmetry), which are predicted to have a direct band gap for x up to 0.5 - 0.6 and would allow the realization of easily processable optoelectronic devices. Exploiting the quasi-perfect lattice matching between GaAs and Ge, we synthesized hexagonal phase GaAs-Ge and GaAs-SixGe1-x core-shell nanowires with x up to 0.59. By combining position-, polarization- and excitation wavelength-dependent u-Raman spectroscopy studies with first-principles calculations, we explore the full lattice dynamics of these materials. In particular, by obtaining frequency-composition calibration curves for the phonon modes, investigating the dependence of the phononic modes on the position along the nanowire, and exploiting resonant Raman conditions to unveil the coupling between lattice vibrations and electronic transitions, we lay the grounds for a deep understanding of the phononic properties of 2H-SixGe1-x nanostructured alloys and of their relationship with crystal quality, chemical composition, and electronic band structure.
General expressions for the electron- and hole-acoustical-phonon deformation potential Hamiltonian (H_{E-DP}) are derived for the case of Ge/Si and Si/Ge core/shell nanowire structures (NWs) with circular cross section. Based on the short-range elastic continuum approach and on derived analytical results, the spatial confined effects on the vector phonon displacement, the phonon dispersion relation and the electron- and hole-phonon scattering amplitudes are analyzed. It is shown that the acoustical vector displacement, phonon frequencies and H_{E-DP} present mixed torsional, axial, and radial components depending on the angular momentum quantum number and phonon wavector under consideration. The treatment shows that bulk group velocities of the constituent materials are renormalized due to the spatial confinement and intrinsic strain at the interface. The role of insulating shell on the phonon dispersion and electron-phonon coupling in Ge/Si and Si/Ge NWs are discussed.