A comprehensive statistical analysis of Swift X-ray light-curves: the prompt-afterglow connection in Gamma-Ray Bursts


Abstract in English

We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma-Ray Bursts (GRBs), with more than 650 GRBs. Two questions drive this effort: (1) Does the X-ray emission retain any kind of memory of the prompt phase? (2) Where is the dividing line between long and short GRBs? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs, but are interestingly characterized by very similar intrinsic absorption. Our analysis reveal the existence of a number of relations that link the X-ray to prompt parameters in long GRBs; short GRBs are outliers of the majority of these 2-parameter relations. Here we concentrate on a 3-parameter (E_pk-Egamma,iso-E_X,iso) scaling that is shared by the GRB class as a whole (short GRBs, long GRBs and X-ray Flashes -XRFs): interpreted in terms of emission efficiency, this scaling may imply that GRBs with high $E_{rm{pk}}$ are more efficient during their prompt emission.

Download