No Arabic abstract
Motivated by a recent experiment of Song emph{et al.} [Science {bf 332}, 1410 (2011)], we theoretically study the spin dynamics, charge dynamics, and point-contact Andreev-reflection spectroscopy (PCARS) of two-band iron-based superconductors of a possible extended $s_pm$-wave pairing symmetry. We consider the case of a dominant $s_pm$ gap blended by a secondary extended $s$ component in which gap nodes can develop in the Fermi pockets near zone corner and/or boundary. Due to the strong nesting effect associated with nodal regions, dynamical spin and charge susceptibilities can exhibit strong peaks at momenta near $(pmpi/2,0)$, $(pmpi,pmpi/2)$, as well as $(pmpi,0)$ in the unfolded Brillouin zone. For PCARS, considering an anisotropic band effect induced by an applied voltage, [100] differential conductance can exhibit a $V$-shape behavior manifesting a gap node occurring in such direction. It is highly suggested that the above features can be experimentally investigated to help sorting out the pairing symmetry of iron-based superconductors.
The possibility of p-wave pairing in superconductors has been proposed more than five decades ago, but has not yet been convincingly demonstrated. One difficulty is that some p-wave states are thermodynamically indistinguishable from s-wave, while others are very similar to d-wave states. Here we studied the self-field critical current of NdFeAs(O,F) thin films in order to extract absolute values of the London penetration depth, the superconducting energy gap, and the relative jump in specific heat at the superconducting transition temperature, and find that all the deduced physical parameters strongly indicate that NdFeAs(O,F) is a bulk p-wave superconductor. Further investigation revealed that single atomic layer FeSe also shows p-wave pairing. In an attempt to generalize these findings, we re-examined the whole inventory of superfluid density measurements in iron-based superconductors show quite generally that most of the iron-based superconductors are p-wave superconductors.
The discovery of high-temperature superconductivity in iron pnictides raised the possibility of an unconventional superconducting mechanism in multiband materials. The observation of Fermi-surface(FS)-dependent nodeless superconducting gaps suggested that inter-FS interactions may play a crucial role in superconducting pairing. In the optimally hole-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$, the pairing strength is enhanced simultaneously (2$Delta$/Tc$sim$7) on the nearly nested FS pockets, i.e. the inner holelike ($alpha$) FS and the two hybridized electronlike FSs, while the pairing remains weak (2$Delta$/Tc$sim$3.6) in the poorly-nested outer hole-like ($beta$) FS. Here we report that in the electron-doped BaFe$_{1.85}$Co$_{0.15}$As$_2$ the FS nesting condition switches from the $alpha$ to the $beta$ FS due to the opposite size changes for hole- and electron-like FSs upon electron doping. The strong pairing strength (2$Delta$/Tc$sim$6) is also found to switch to the nested $beta$ FS, indicating an intimate connection between FS nesting and superconducting pairing, and strongly supporting the inter-FS pairing mechanism in the iron-based superconductors.
Recent experiments on certain Fe-based superconductors have hinted at a role for paired electrons in incipient bands that are close to, but do not cross the Fermi level. Related theoretical works disagree on whether or not strong-coupling superconductivity is required to explain such effects, and whether a critical interaction strength exists. In this work, we consider vario
Based on an effective two-band model and using the fluctuation-exchange (FLEX) approach, we explore spin fluctuations and unconventional superconducting pairing in Fe-based layer superconductors. It is elaborated that one type of interband antiferromagnetic (AF) spin fluctuation stems from the interband Coulomb repulsion, while the other type of intraband AF spin fluctuation originates from the intraband Coulomb repulsion. Due to the Fermi-surface topology, a spin-singlet extended s-wave superconducting state is more favorable than the nodal $d_{XY}$-wave state if the interband AF spin fluctuation is more significant than the intraband one, otherwise vice versa. It is also revealed that the effective interband coupling plays an important role in the intraband pairings, which is a distinct feature of the present two-band system.
Electron correlations play a central role in iron-based superconductors. In these systems, multiple Fe $3d$-orbitals are active in the low-energy physics, and they are not all degenerate. For these reasons, the role of orbital-selective correlations has been an active topic in the study of the iron-based systems. In this paper, we survey the recent developments on the subject. For the normal state, we emphasize the orbital-selective Mott physics that has been extensively studied, especially in the iron chalcogenides, in the case of electron filling $n sim 6$. In addition, the interplay between orbital selectivity and electronic nematicity is addressed. For the superconducting state, we summarize the initial ideas for orbital-selective pairing, and discuss the recent explosive activities along this direction. We close with some perspectives on several emerging topics. These include the evolution of the orbital-selective correlations, magnetic and nematic orders and superconductivity as the electron filling factor is reduced from $6$ to $5$, as well as the interplay between electron correlations and topological bandstructure in iron-based superconductors.