Do you want to publish a course? Click here

Reconstruction of the interaction term between dark matter and dark energy using SNe Ia, BAO, CMB, H(z) and X-ray gas mass fraction

254   0   0.0 ( 0 )
 Added by Ulises Nucamendi
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, in [1] we developed a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state (EOS) parameter interacting with dark matter (DM). The reconstruction method is based on expansions of the general interaction term and the relevant cosmological variables in terms of Chebyshev polynomials which form a complete set orthonormal functions. In this article, we reconstruct the interaction function expanding it in terms of only the first four Chebyshev polynomials and obtain the best estimation for the coefficients of the expansion assuming three models: (a) a DE equation of the state parameter w=-1 (an interacting cosmological Lambda), (b) a DE equation of the state parameter w = constant with a dark matter density parameter fixed, (c) a DE equation of the state parameter w = constant with a free constant dark matter density parameter to be estimated. In all the cases, the preliminary reconstruction shows that in the best scenario there exist the possibility of a crossing of the noninteracting line Q=0 in the recent past within the 1-sigma and 2-sigma errors from positive values at early times to negative values at late times. This means that, in this reconstruction, there is an energy transfer from DE to DM at early times and an energy transfer from DM to DE at late times. We conclude that this fact is an indication of the possible existence of a crossing behavior in a general interaction coupling between dark components. Finally, we conclude that in this scenario, the observations put strong constraints on the strength of the interaction so that its magnitude can not solve the coincidence problem or at least alleviate significantly.



rate research

Read More

We apply a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state (EOS) parameter interacting with dark matter (DM). The reconstruction method is based on expansions of the general interaction term and the relevant cosmological variables in terms of Chebyshev polynomials which form a complete set orthonormal functions. This interaction term describes an exchange of energy flow between the DE and DM within dark sector. To show how the method works we do the reconstruction of the interaction function expanding it in terms of only the first six Chebyshev polynomials and obtain the best estimation for the coefficients of the expansion assuming three models: (a) a DE equation of the state parameter $w =-1$ (an interacting cosmological $Lambda$), (b) a DE equation of the state parameter $w =$ constant with a dark matter density parameter fixed, (c) a DE equation of the state parameter $w =$ constant with a free constant dark matter density parameter to be estimated, and using the Union2 SNe Ia data set from The Supernova Cosmology Project (SCP) composed by 557 type Ia supernovae. In both cases, the preliminary reconstruction shows that in the best scenario there exist the possibility of a crossing of the noninteracting line Q=0 in the recent past within the $1sigma$ and $2sigma$ errors from positive values at early times to negative values at late times. This means that, in this reconstruction, there is an energy transfer from DE to DM at early times and an energy transfer from DM to DE at late times. We conclude that this fact is an indication of the possible existence of a crossing behavior in a general interaction coupling between dark components.
The differential age data of astrophysical objects that have evolved passivelly during the history of the universe (e.g. red galaxies) allows to test theoretical cosmological models through the predicted Hubble function expressed in terms of the redshift $z$, $H(z)$. We use the observational data for $H(z)$ to test unified scenarios for dark matter and dark energy. Specifically, we focus our analysis on the Generalized Chaplygin Gas (GCG) and the viscous fluid (VF) models. For the GCG model, it is shown that the unified scenario for dark energy and dark matter requires some priors. For the VF model we obtain estimations for the free parameters that may be compared with further analysis mainly at perturbative level.
The free parameters of a flat accelerating model without dark energy are constrained by using Supernovae type Ia and observational H(z) data. Instead of the vacuum dominance, the present accelerating stage in this modified Einstein-de Sitter cosmology is a consequence of the gravitationally-induced particle production of cold dark matter. The model present a transition from a decelerating to an accelerating regime at low redshifts, and is also able to harmonize a cold dark matter picture with the latest measurements of the Hubble constant H_0, the Supernovae observations (Constitution sample), and the H(z) data.
We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling $b$ by the form $b(a)=b_0a+b_e(1-a)$, where at the early-time the coupling is given by a constant $b_{e}$ and today the coupling is described by another constant $b_{0}$. We explore six specific models with (i) $Q(a)=b(a)H_0rho_0$, (ii) $Q(a)=b(a)H_0rho_{rm de}$, (iii) $Q(a)=b(a)H_0rho_{rm c}$, (iv) $Q(a)=b(a)Hrho_0$, (v) $Q(a)=b(a)Hrho_{rm de}$, and (vi) $Q(a)=b(a)Hrho_{rm c}$. The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the Hubble constant direct measurement. We find that, for all the models, we have $b_0<0$ and $b_e>0$ at around the 1$sigma$ level, and $b_0$ and $b_e$ are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1$sigma$ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.
183 - Bo-Yu Pu , Xiao-Dong Xu , Bin Wang 2014
We study a class of early dark energy models which has substantial amount of dark energy in the early epoch of the universe. We examine the impact of the early dark energy fluctuations on the growth of structure and the CMB power spectrum in the linear approximation. Furthermore we investigate the influence of the interaction between the early dark energy and the dark matter and its effect on the structure growth and CMB. We finally constrain the early dark energy model parameters and the coupling between dark sectors by confronting to different observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا