Do you want to publish a course? Click here

Discovering bright quasars at intermediate redshifts based on the optical/near-IR colors

145   0   0.0 ( 0 )
 Added by Xue-Bing Wu
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Identifications of quasars at intermediate redshifts (2.2<z<3.5) are inefficient in most previous quasar surveys as their optical colors are similar to those of stars. The near-IR K-band excess technique has been suggested to overcome this difficulty. Our study also proposed to use optical/near-IR colors for selecting z<4 quasars. To this method, we selected 105 unidentified bright targets with i<18.5 from the quasar candidates of SDSS DR6 with both SDSS ugriz optical and UKIDSS YJHK near-IR photometric data, which satisfy our proposed Y-K/g-z criterion and have photometric redshifts between 2.2 and 3.5 estimated from the 9-band SDSS-UKIDSS data. 43 of them were observed with the 2.16m telescope of NAOC in 2012. 36 of them were identified as quasars at 2.1<z<3.4. High success rate of discovering these quasars in the SDSS spectroscopic surveyed area demonstrates the robustness of both the Y-K/g-z selection criterion and the photometric redshift estimation technique. We also used the above criterion to investigate the possible star contamination rate to the quasar candidates of SDSS DR6, and found that it is much higher in selecting 3<z<3.5 quasar candidates than selecting lower redshift ones (z<2.2). The significant improvement in the photometric redshift estimation by using the 9-band SDSS-UKIDSS data than using the 5-band SDSS data is demonstrated and a catalog of 7,727 unidentified quasar candidates with photometric redshifts between 2.2 and 3.5 is provided. We also tested the Y-K/g-z selection criterion with the SDSS-III/DR9 quasar catalog, and found 96.2% of 17,999 DR9 quasars with UKIDSS Y and K-band data satisfy our criterion. With some samples of red and type II quasars, we found that 88% and 96.5% of them can be selected by the Y-K/g-z criterion respectively, which supports that using the Y-K/g-z criterion we can efficiently select both unobscured and obscured quasars. (abridged)



rate research

Read More

We report the results of our intensive intranight optical monitoring of 8 `radio-intermediate quasars (RIQs) having flat or inverted radio spectra. The monitoring was carried out in {it R-} band on 25 nights during 2005-09. An intranight optical variability (INOV) detection threshold of $sim$ 1--2% was achieved for the densely sampled differential light curves (DLCs). These observations amount to a large increase over those reported hitherto for this rare and sparsely studied class of quasars which can, however, play an important role in understanding the link between the dominant varieties of powerful AGN, namely the radio-quiet quasars (RQQs), radio-loud quasars (RLQs) and blazars. Despite the probable presence of relativistically boosted nuclear jets, clear evidence for INOV in our extensive observations was detected only on one night. These results demonstrate that as a class, RIQs are much less extreme in nuclear activity compared to blazars. The availability in the literature of INOV data for another 2 RIQs conforming to our selection criteria allowed us to enlarge the sample to 10 RIQs (monitored on a total of 42 nights for a minimum duration of $sim 4$ hours per night). The absence of large amplitude INOV $(psi > 3%)$ persists in this enlarged sample. This extensive database has enabled us to arrive at the first estimate for the INOV Duty Cycle (DC) of RIQs. The DC is found to be small ($sim$ 9%). The corresponding value is known to be $sim 60%$ for BL Lacs and $approx 15%$ for RLQs and RQQs. On longer-term, the RIQs are found to be fairly variable with typical amplitudes of $approx$ 0.1-mag. The light curves of these RIQs are briefly discussed in the context of a theoretical framework proposed earlier for linking this rare kind of quasars to the much better studied dominant classes of quasars.
We present optical spectroscopy of a sample of 38 post-starburst quasars (PSQs) at z ~ 0.3, 29 of which have morphological classifications based on Hubble Space Telescope imaging. These broad-lined active galactic nuclei (AGNs) possess the spectral signatures of massive intermediate-aged stellar populations making them potentially useful for studying connections between nuclear activity and host galaxy evolution. We model the spectra in order to determine the ages and masses of the host stellar populations, and the black hole masses and Eddington fractions of the AGNs. Our model components include an instantaneous starburst, a power-law, and emission lines. We find the PSQs have MBH ~ 10^8 Msun accreting at a few percent of Eddington luminosity and host ~ 10^10.5 Msun stellar populations which are several hundred Myr to a few Gyr old. We investigate relationships among these derived properties, spectral properties, and morphologies. We find that PSQs hosted in spiral galaxies have significantly weaker AGN luminosities, older starburst ages, and narrow emission-line ratios diagnostic of ongoing star-formation when compared to their early-type counterparts. We conclude that the early-type PSQs are likely the result of major mergers and were likely luminous infrared galaxies in the past, while spiral PSQs with more complex star-formation histories are triggered by less dramatic events (e.g., harassment, bars). We provide diagnostics to distinguish the early-type and spiral hosts when high spatial resolution imaging is not available.
180 - Fabio D. Barazza 2009
We present the first study of large-scale bars in clusters at intermediate redshifts (z=0.4-0.8). We compare the properties of the bars and their host galaxies in the clusters with those of a field sample in the same redshift range. We use a sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. The morphological classification of the galaxies and the detection of bars are based on deep HST/ACS F814W images. The total optical bar fraction in the redshift range z=0.4-0.8, averaged over the entire sample, is 25%. This is lower than found locally, but in good agreement with studies of bars in field environments at intermediate redshifts. For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. In agreement with local studies, we find that disk-dominated galaxies have a higher bar fraction than bulge-dominated galaxies. We also find, based on a small subsample, that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher than at larger distances.
It has now become recognised that damped Lyman alpha systems play an important role in helping us unravel the origin of chemical elements. In this presentation, we describe the main results of a recently completed survey of the most metal-poor DLAs, aimed at complementing and extending studies of the oldest stars in the Galaxy. The survey has clarified a number of lingering issues concerning the abundances of C, N, O in the low metallicity regime, has revealed the existence of DLA analogues to Carbon-enhanced metal-poor stars, and is providing some of the most precise measures of the primordial abundance of Deuterium.
Correlations between the intrinsic shapes of galaxy pairs, and between the intrinsic shapes of galaxies and the large-scale density field, may be induced by tidal fields. These correlations, which have been detected at low redshifts (z<0.35) for bright red galaxies in the Sloan Digital Sky Survey (SDSS), and for which upper limits exist for blue galaxies at z~0.1, provide a window into galaxy formation and evolution, and are also an important contaminant for current and future weak lensing surveys. Measurements of these alignments at intermediate redshifts (z~0.6) that are more relevant for cosmic shear observations are very important for understanding the origin and redshift evolution of these alignments, and for minimising their impact on weak lensing measurements. We present the first such intermediate-redshift measurement for blue galaxies, using galaxy shape measurements from SDSS and spectroscopic redshifts from the WiggleZ Dark Energy Survey. Our null detection allows us to place upper limits on the contamination of weak lensing measurements by blue galaxy intrinsic alignments that, for the first time, do not require significant model-dependent extrapolation from the z~0.1 SDSS observations. Also, combining the SDSS and WiggleZ constraints gives us a long redshift baseline with which to constrain intrinsic alignment models and contamination of the cosmic shear power spectrum. Assuming that the alignments can be explained by linear alignment with the smoothed local density field, we find that a measurement of sigma_8 in a blue-galaxy dominated, CFHTLS-like survey would be contaminated by at most +/-0.02 (95% confidence level, SDSS and WiggleZ) or +/-0.03 (WiggleZ alone) due to intrinsic alignments. [Abridged]
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا