Do you want to publish a course? Click here

The zCOSMOS 20k Group Catalog

128   0   0.0 ( 0 )
 Added by Christian Knobel
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an optical group catalog between 0.1 < z < 1 based on 16,500 high-quality spectroscopic redshifts in the completed zCOSMOS-bright survey. The catalog published herein contains 1498 groups in total and 192 groups with more than five observed members. The catalog includes both group properties and the identification of the member galaxies. Based on mock catalogs, the completeness and purity of groups with three and more members should be both about 83% with respect to all groups that should have been detectable within the survey, and more than 75% of the groups should exhibit a one-to-one correspondence to the real groups. Particularly at high redshift, there are apparently more galaxies in groups in the COSMOS field than expected from mock catalogs. We detect clear evidence for the growth of cosmic structure over the last seven billion years in the sense that the fraction of galaxies that are found in groups (in volume-limited samples) increases significantly with cosmic time. In the second part of the paper, we develop a method for associating galaxies that only have photo-z to our spectroscopically identified groups. We show that this leads to improved definition of group centers, improved identification of the most massive galaxies in the groups, and improved identification of central and satellite galaxies, where we define the former to be galaxies at the minimum of the gravitational potential wells. Subsamples of centrals and satellites in the groups can be defined with purities up to 80%, while a straight binary classification of all group and non-group galaxies into centrals and satellites achieves purities of 85% and 75%, respectively, for the spectroscopic sample.



rate research

Read More

Using the group catalog obtained from zCOSMOS spectroscopic data and the complementary photometric data from the COSMOS survey, we explore segregation effects occurring in groups of galaxies at intermediate/high redshifts. We built two composite groups at intermediate (0.2 <= z <= 0.45) and high (0.45 < z <= 0.8) redshifts, and we divided the corresponding composite group galaxies into three samples according to their distance from the group center. We explored how galaxy stellar masses and colors - working in narrow bins of stellar masses - vary as a function of the galaxy distance from the group center. We found that the most massive galaxies in our sample (Log(M_gal/M_sun) >= 10.6) do not display any strong group-centric dependence of the fractions of red/blue objects. For galaxies of lower masses (9.8 <= Log(M_gal/M_sun) <= 10.6) there is a radial dependence in the changing mix of red and blue galaxies. This dependence is most evident in poor groups, whereas richer groups do not display any obvious trend of the blue fraction. Interestingly, mass segregation shows the opposite behavior: it is visible only in rich groups, while poorer groups have a a constant mix of galaxy stellar masses as a function of radius. We suggest a simple scenario where color- and mass-segregation originate from different physical processes. While dynamical friction is the obvious cause for establishing mass segregation, both starvation and galaxy-galaxy collisions are plausible mechanisms to quench star formation in groups at a faster rate than in the field. In poorer groups the environmental effects are caught in action superimposed to secular galaxy evolution. Their member galaxies display increasing blue fractions when moving from the group center to more external regions, presumably reflecting the recent accretion history of these groups.
106 - K. Kovac , S. J. Lilly , C. Knobel 2013
We explore the role of environment in the evolution of galaxies over 0.1<z<0.7 using the final zCOSMOS-bright data set. Using the red fraction of galaxies as a proxy for the quenched population, we find that the fraction of red galaxies increases with the environmental overdensity and with the stellar mass, consistent with previous works. As at lower redshift, the red fraction appears to be separable in mass and environment, suggesting the action of two processes: mass and environmental quenching. The parameters describing these appear to be essentially the same at z~0.7 as locally. We explore the relation between red fraction, mass and environment also for the central and satellite galaxies separately, paying close attention to the effects of impurities in the central-satellite classification and using carefully constructed samples matched in stellar mass. There is little evidence for a dependence of the red fraction of centrals on overdensity. Satellites are consistently redder at all overdensities, and the satellite quenching efficiency increases with overdensity at 0.1<z<0.4. This is less marked at higher redshift, but both are nevertheless consistent with the equivalent local measurements. At a given stellar mass, the fraction of galaxies that are satellites also increases with the overdensity. At a given overdensity and mass, the obtained relation between the environmental quenching and the satellite fraction agrees well with the satellite quenching efficiency, demonstrating that the environmental quenching in the overall population is consistent with being entirely produced through the satellite quenching process at least up to z=0.7. However, despite the unprecedented size of our high redshift samples, the associated statistical uncertainties are still significant and our statements should be understood as approximations to physical reality, rather than physically exact formulae.
We present a group-galaxy cross-correlation analysis using a group catalog produced from the 16,500 spectra from the optical zCOSMOS galaxy survey. Our aim is to perform a consistency test in the redshift range 0.2 < z < 0.8 between the clustering strength of the groups and mass estimates that are based on the richness of the groups. We measure the linear bias of the groups by means of a group-galaxy cross-correlation analysis and convert it into mass using the bias-mass relation for a given cosmology, checking the systematic errors using realistic group and galaxy mock catalogs. The measured bias for the zCOSMOS groups increases with group richness as expected by the theory of cosmic structure formation and yields masses that are reasonably consistent with the masses estimated from the richness directly, considering the scatter that is obtained from the 24 mock catalogs. An exception are the richest groups at high redshift (estimated to be more massive than 10^13.5 M_sun), for which the measured bias is significantly larger than for any of the 24 mock catalogs (corresponding to a 3-sigma effect), which is attributed to the extremely large structure that is present in the COSMOS field at z ~ 0.7. Our results are in general agreement with previous studies that reported unusually strong clustering in the COSMOS field.
We took advantage of the wealth of information provided by the first ~10000 galaxies of the zCOSMOS-bright survey and its group catalogue to study the complex interplay between group environment and galaxy properties. The classical indicator F_blue (fraction of blue galaxies) proved to be a simple but powerful diagnostic tool. We studied its variation for different luminosity and mass selected galaxy samples. Using rest-frame B-band selected samples, the groups galaxy population exhibits significant blueing as redshift increases, but maintains a lower F_blue with respect both to the global and the isolated galaxy population. However moving to mass selected samples it becomes apparent that such differences are largely due to the biased view imposed by the B-band luminosity selection, being driven by the population of lower mass, bright blue galaxies for which we miss the redder, equally low mass, counterparts. By focusing the analysis on narrow mass bins such that mass segregation becomes negligible we find that only for the lowest mass bin explored (logMass <= 10.6) does a significant residual difference in color remain as a function of environment, while this difference becomes negligible toward higher masses. Our results indicate that red galaxies of logMass >= 10.8 are already in place at z ~ 1 and do not exhibit any strong environmental dependence, possibly originating from so-called nature/internal mechanisms. In contrast, for lower galaxy masses and redshifts lower than z ~ 1, we observe the emergence in groups of a population of nurture red galaxies: slightly deviating from the trend of the downsizing scenario followed by the global galaxy population, and more so with cosmic time. These galaxies exhibit signatures of group-related secular physical mechanisms directly influencing galaxy evolution.
125 - K. Kovac , S. J. Lilly , C. Knobel 2009
We study the evolution of galaxies inside and outside of the group environment since z=1 using a large well defined set of groups and galaxies from the zCOSMOS-bright redshift survey in the COSMOS field. The fraction of galaxies with early-type morphologies increases monotonically with M_B luminosity and stellar mass and with cosmic epoch. It is higher in the groups than elsewhere, especially at later epochs. The emerging environmental effect is superposed on a strong global mass-driven evolution, and at z~0.5 and log(M*/Msol)~10.2, the effect of group environment is equivalent to (only) about 0.2 dex in stellar mass or 2 Gyr in time. The stellar mass function of galaxies in groups is enriched in massive galaxies. We directly determine the transformation rates from late to early morphologies, and for transformations involving colour and star formation indicators. The transformation rates are systematically about twice as high in the groups as outside, or up to 3-4 times higher correcting for infall and the appearance of new groups. The rates reach values, for masses around the crossing mass 10^10.5 Msol, as high as (0.3-0.7)/Gyr in the groups, implying transformation timescales of 1.4-3 Gyr, compared with less than 0.2/Gyr, i.e. timescales >5 Gyr, outside of groups. All three transformation rates decrease at higher stellar masses, and must decrease also at the lower masses below 10^10 Msol which we cannot well probe. The rates involving colour and star formation are consistently higher than those for morphology, by a factor of about 50%. Our conclusion is that the transformations which drive the evolution of the overall galaxy population since z~1 must occur at a rate 2-4 times higher in groups than outside of them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا