Do you want to publish a course? Click here

Narrow Band Halpha Photometry of the Super-Earth GJ 1214b with GTC/OSIRIS Tunable Filters

161   0   0.0 ( 0 )
 Added by Felipe Murgas
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The super-earth planet GJ 1214b has recently been the focus of several studies, using the transit spectroscopy technique, trying to determine the nature of its atmosphere. Here we focus on the Halpha line as a tool to further restrict the nature of GJ1214s atmosphere. We used the Gran Telescopio Canarias (GTC) OSIRIS instrument to acquire narrow band photometry with tunable filters. With our observations, we were able to observe the primary transit of the super-Earth GJ 1214b in three bandpasses: two centered in the continuum around Halpha (653.5 nm and 662.0 nm) and one centered at the line core (656.3 nm). We measure the depth of the planetary transit at each wavelength interval.By fitting analytic models to the measured light curves we were able to compute the depth of the transit at the three bandpasses. Taking the difference in the computed planet to star radius ratio between the line and the comparison continuum filters, we find Delta (Rp/Rstar)_{Halpha-653.5} = (6.60 +/- 3.54) 10^-3 and Delta (Rp/Rstar)_{Halpha-662.0} = (3.30 +/- 3.61) 10^-3. Although the planet radius is found to be larger in the Halpha line than in the surrounding continuum, the quality of our observations and the sigma level of the differences (1.8 and 1.0, respectively) does not allow us to claim an Halpha excess in GJ1214s atmosphere. Further observations will be needed to resolve this issue.



rate research

Read More

We present narrow-band photometric measurements of the exoplanet GJ 1214b using the 10.4 m Gran Telescopio Canarias (GTC) and the OSIRIS instrument. Using tuneable filters we observed a total of five transits, three of which were observed at two wavelengths nearly simultaneously, producing a total of eight individual light curves, six of these probed the possible existence of a methane absorption feature in the 8770 - 8850 {AA} region at high resolution. We detect no increase in the planet-to-star radius ratio across the methane feature with a change in radius ratio of $Delta$R = -0.0007 $pm$ 0.0017 corresponding to a scale height (H) change of -0.5 $pm$ 1.2 H across the methane feature, assuming a hydrogen dominated atmosphere. We find a variety of water and cloudy atmospheric models fit the data well, but find that cloud-free models provide poor fits. These observations support a flat transmission spectrum resulting from the presence of a high-altitude haze or a water-rich atmosphere, in agreement with previous studies. In this study the observations are predominantly limited by the photometric quality and the limited number of data points (resulting from a long observing cadence), which make the determination of the systematic noise challenging. With tuneable filters capable of high resolution measurements (R ~ 600 - 750) of narrow absorption features, the interpretation of our results are also limited by the absence of high resolution methane models below 1 $mu$m.
GJ 1214b is one of the few known transiting super-Earth-sized exoplanets with a measured mass and radius. It orbits an M-dwarf, only 14.55 pc away, making it a favorable candidate for follow-up studies. However, the composition of GJ 1214bs mysterious atmosphere has yet to be fully unveiled. Our goal is to distinguish between the various proposed atmospheric models to explain the properties of GJ 1214b: hydrogen-rich or hydrogen-He mix, or a heavy molecular weight atmosphere with reflecting high clouds, as latest studies have suggested. Wavelength-dependent planetary radii measurements from the transit depths in the optical/NIR are the best tool to investigate the atmosphere of GJ 1214b. We present here (i) photometric transit observations with a narrow-band filter centered on 2.14 microns and a broad-band I-Bessel filter centered on 0.8665 microns, and (ii) transmission spectroscopy in the H and K atmospheric windows that cover three transits. The obtained photometric and spectrophotometric time series were analyzed with MCMC simulations to measure the planetary radii as a function of wavelength. We determined radii ratios of 0.1173 for I-Bessel and 0.11735 at 2.14 microns. Our measurements indicate a flat transmission spectrum, in agreement with last atmospheric models that favor featureless spectra with clouds and high molecular weight compositions.
OSIRIS (Optical System for Imaging and low Resolution Integrated Spectroscopy) is the first light instrument of the Gran Telescopio Canarias (GTC). It provides a flexible and competitive tunable filter (TF). Since it is based on a Fabry-Perot interferometer working in collimated beam, the TF transmission wavelength depends on the position of the target with respect to the optical axis. This effect is non-negligible and must be accounted for in the data reduction. Our paper establishes a wavelength calibration for OSIRIS TF with the accuracy required for spectrophotometric measurements using the full field of view (FOV) of the instrument. The variation of the transmission wavelength $lambda(R)$ across the FOV is well described by $lambda(R)=lambda(0)/sqrt{1+(R/f_2)^2}$, where $lambda(0)$ is the central wavelength, $R$ represents the physical distance from the optical axis, and $f_2=185.70pm0.17,$mm is the effective focal length of the camera lens. This new empirical calibration yields an accuracy better than 1,AA across the entire OSIRIS FOV ($sim$8arcmin$times$8arcmin), provided that the position of the optical axis is known within 45 $mu$m ($equiv$ 1.5 binned pixels). We suggest a calibration protocol to grant such precision over long periods, upon re-alignment of OSIRIS optics, and in different wavelength ranges. This calibration differs from the calibration in OSIRIS manual which, nonetheless, provides an accuracy $lesssim1$AA, for $Rlesssim 2arcmin$.
GJ 1214 is orbited by a transiting super-Earth-mass planet. It is a primary target for ongoing efforts to understand the emerging population of super-Earth-mass planets around M dwarfs. We present new precision astrometric measurements, a re-analysis of HARPS radial velocity measurements, and medium-resolution infrared spectroscopy of GJ 1214. We combine these measurements with recent transit follow-up observations and new catalog photometry to provide a comprehensive update of the star-planet properties. The distance is obtained with 0.6% relative uncertainty using CAPScam astrometry. The new value increases the nominal distance to the star by ~10% and is significantly more precise than previous measurements. Updated Doppler measurements combined with published transit observations significantly refine the constraints on the orbital solution. The analysis of the infrared spectrum and photometry confirm that the star is enriched in metals compared to the Sun. Using all this information, combined with empirical mass-luminosity relations for low mass stars, we derive updated values for the bulk properties of the star-planet system. We also use infrared absolute fluxes to estimate the stellar radius and to re-derive the star-planet properties. Both approaches provide very consistent values for the system. Our analysis shows indicates that the favoured mean density of GJ 1214b is 1.6 +/-0.6 g cm^{-3}. We illustrate how fundamental properties of M dwarfs are of paramount importance in the proper characterization of the low mass planetary candidates orbiting them. Given that the distance is now known to better than 1%, interferometric measurements of the stellar radius, additional high precision Doppler observations, and/or or detection of the secondary transit (occultation), are necessary to further improve the constraints on the GJ 1214 star-planet properties.
Tunable filters are a powerful way of implementing narrow-band imaging mode over wide wavelength ranges, without the need of purchasing a large number of narrow-band filters covering all strong emission or absorption lines at any redshift. However, one of its main features is a wavelength variation across the field of view, sometimes termed the phase effect. In this work, an anomalous phase effect is reported and characterized for the OSIRIS instrument at the 10.4m Gran Telescopio Canarias. The transmitted wavelength across the field of view of the instrument depends, not only on the distance to the optical centre, but on wavelength. This effect is calibrated for the red tunable filter of OSIRIS by measuring both normal-incidence light at laboratory and spectral lamps at the telescope at non-normal incidence. This effect can be explained by taking into account the inner coatings of the etalon. In a high spectral resolution etalon, the gap between plates is much larger than the thickness of the inner reflective coatings. In the case of a tunable filter, like that in OSIRIS, the coatings thickness could be of the order of the cavity, which changes drastically the effective gap of the etalon. We show that by including thick and dispersive coatings into the interference equations, the observed anomalous phase effect can be perfectly reproduced. In fact, we find that, for the OSIRIS red TF, a two-coatings model fits the data with a rms of 0.5AA at all wavelengths and incidence angles. This is a general physical model that can be applied to other tunable-filter instruments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا