No Arabic abstract
The background noise between 1 and 1.8 microns in ground-based instruments is dominated by atmospheric emission from hydroxyl molecules. We have built and commissioned a new instrument, GNOSIS, which suppresses 103 OH doublets between 1.47 - 1.7 microns by a factor of ~1000 with a resolving power of ~10,000. We present the first results from the commissioning of GNOSIS using the IRIS2 spectrograph at the AAT. The combined throughput of the GNOSIS fore-optics, grating unit and relay optics is ~36 per cent, but this could be improved to ~46 per cent with a more optimal design. We measure strong suppression of the OH lines, confirming that OH suppression with fibre Bragg gratings will be a powerful technology for low resolution spectroscopy. The integrated OH suppressed background between 1.5 and 1.7 microns is reduced by a factor of 9 compared to a control spectrum using the same system without suppression. The potential of low resolution OH suppressed spectroscopy is illustrated with example observations. The GNOSIS background is dominated by detector dark current below 1.67 microns and by thermal emission above 1.67 microns. After subtracting these we detect an unidentified residual interline component of ~ 860 +/ 210 ph/s/m^2/micron/arcsec^2. This component is equally bright in the suppressed and control spectra. We have investigated the possible source of the interline component, but were unable to discriminate between a possible instrumental artifact and intrinsic atmospheric emission. Resolving the source of this emission is crucial for the design of fully optimised OH suppression spectrographs. The next generation OH suppression spectrograph will be focussed on resolving the source of the interline component, taking advantage of better optimisation for a FBG feed. We quantify the necessary improvements for an optimal OH suppressing fibre spectrograph design.
GNOSIS is a prototype astrophotonic instrument that utilizes OH suppression fibres consisting of fibre Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47-1.7 microns. GNOSIS was commissioned at the 3.9-meter Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibres, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput and excellent suppression of the skylines by the OH suppression fibres, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS and IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise-dominated. OH suppression fibres could potentially impact ground-based astronomy at the level of adaptive optics or greater. However, until a clear reduction in the interline background and the corresponding increasing in sensitivity is demonstrated optimized OH suppression fibres paired with a fibre-fed spectrograph will at least provide a real benefits at low resolving powers.
Ground-based near-infrared astronomy is severely hampered by the forest of atmospheric emission lines resulting from the rovibrational decay of OH molecules in the upper atmosphere. The extreme brightness of these lines, as well as their spatial and temporal variability, makes accurate sky subtraction difficult. Selectively filtering these lines with OH suppression instruments has been a long standing goal for near-infrared spectroscopy. We have shown previously the efficacy of fibre Bragg gratings combined with photonic lanterns for achieving OH suppression. Here we report on PRAXIS, a unique near-infrared spectrograph that is optimised for OH suppression with fibre Bragg gratings. We show for the first time that OH suppression (of any kind) is possible with high overall throughput (18 per cent end-to-end), and provide examples of the relative benefits of OH suppression.
We calculate the advances in near-infrared astronomy made possible through the use of fibre Bragg gratings to selectively remove hydroxyl emission lines from the night sky spectrum. Fibre Bragg gratings should remove OH lines at high resolution (R=10,000), with high suppression (30dB) whilst maintaining high throughput (~90 per cent) between the lines. Devices currently under construction should remove 150 lines in each of the J and H bands, effectively making the night sky surface brightness ~4 magnitudes fainter. This background reduction is greater than the improvement adapative optics makes over natural seeing; photonic OH suppression is at least as important as adaptive optics for the future of cosmology. We present a model of the NIR sky spectrum, and show that the interline continuum is very faint (~80 ph/s/m^s/arcsec/micron on the ecliptic plane). We show that OH suppression by high dispersion, i.e. `resolving out the skylines, cannot obtain the required level of sensitivity to reach the interline continuum due to scattering of light. The OH lines must be suppressed prior to dispersion. We have simulated observations employing fibre Bragg gratings of first light objects, high redshift galaxies and cool, low-mass stars. The simulations are of complete end-to-end systems from object to detector. The results demonstrate that fibre Bragg grating OH suppression will significantly advance our knowledge in many areas of astrophysics, and in particular will enable rest-frame ultra-violet observations of the Universe at the time of first light and reionisation.
Gaia is currently revolutionizing modern astronomy. However, much of the Galactic plane, center and the spiral arm regions are obscured by interstellar extinction, rendering them inaccessible because Gaia is an optical instrument. An all-sky near infrared (NIR) space observatory operating in the optical NIR, separated in time from the original Gaia would provide microarcsecond NIR astrometry and millimag photometry to penetrate obscured regions unraveling the internal dynamics of the Galaxy.
Aims Determining the intensity of lines and continuum airglow emission in the H-band is important for the design of faint-object infrared spectrographs. Existing spectra at low/medium resolution cannot disentangle the true sky-continuum from instrumental effects (e.g. diffuse light in the wings of strong lines). We aim to obtain, for the first time, a high resolution infrared spectrum deep enough to set significant constraints on the continuum emission between the lines in the H-band. Methods During the second commissioning run of the GIANO high-resolution infrared spectrograph at La Palma Observatory, we pointed the instrument directly to the sky and obtained a deep spectrum that extends from 0.97 to 2.4 micron. Results The spectrum shows about 1500 emission lines, a factor of two more than in previous works. Of these, 80% are identified as OH transitions; half of these are from highly excited molecules (hot-OH component) that are not included in the OH airglow emission models normally used for astronomical applications. The other lines are attributable to O2 or unidentified. Several of the faint lines are in spectral regions that were previously believed to be free of line emission. The continuum in the H-band is marginally detected at a level of about 300 photons/m^2/s/arcsec^2/micron, equivalent to 20.1 AB-mag/arcsec^2. The observed spectrum and the list of observed sky-lines are published in electronic format. Conclusions Our measurements indicate that the sky continuum in the H-band could be even darker than previously believed. However, the myriad of airglow emission lines severely limits the spectral ranges where very low background can be effectively achieved with low/medium resolution spectrographs. We identify a few spectral bands that could still remain quite dark at the resolving power foreseen for VLT-MOONS (R ~6,600).