Do you want to publish a course? Click here

Linear stability of elliptic Lagrangian solutions of the planar three-body problem via index theory

262   0   0.0 ( 0 )
 Added by Shanzhong Sun
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is well known that the linear stability of Lagrangian elliptic equilateral triangle homographic solutions in the classical planar three-body problem depends on the mass parameter $bb=27(m_1m_2+m_2m_3+m_3m_1)/(m_1+m_2+m_3)^2in [0,9]$ and the eccentricity $ein [0,1)$. We are not aware of any existing analytical method which relates the linear stability of these solutions to the two parameters directly in the full rectangle $[0,9]times [0,1)$, besides perturbation methods for $e>0$ small enough, blow-up techniques for $e$ sufficiently close to 1, and numerical studies. In this paper, we introduce a new rigorous analytical method to study the linear stability of these solutions in terms of the two parameters in the full $(bb,e)$ range $[0,9]times [0,1)$ via the $om$-index theory of symplectic paths for $om$ belonging to the unit circle of the complex plane, and the theory of linear operators. After establishing the $om$-index decreasing property of the solutions in $bb$ for fixed $ein [0,1)$, we prove the existence of three curves located from left to right in the rectangle $[0,9]times [0,1)$, among which two are -1 degeneracy curves and the third one is the right envelop curve of the $om$-degeneracy curves for $om ot=1$, and show that the linear stability pattern of such elliptic Lagrangian solutions changes if and only if the parameter $(bb,e)$ passes through each of these three curves. Interesting symmetries of these curves are also observed. The singular case when the eccentricity $e$ approaches to 1 is also analyzed in details concerning the linear stability.



rate research

Read More

Continuing work initiated in an earlier publication [Yamada, Tsuchiya, and Asada, Phys. Rev. D 91, 124016 (2015)], we reexamine the linear stability of the triangular solution in the relativistic three-body problem for general masses by the standard linear algebraic analysis. In this paper, we start with the Einstein-Infeld-Hoffman form of equations of motion for $N$-body systems in the uniformly rotating frame. As an extension of the previous work, we consider general perturbations to the equilibrium, i.e. we take account of perturbations orthogonal to the orbital plane, as well as perturbations lying on it. It is found that the orthogonal perturbations depend on each other by the first post-Newtonian (1PN) three-body interactions, though these are independent of the lying ones likewise the Newtonian case. We also show that the orthogonal perturbations do not affect the condition of stability. This is because these always precess with two frequency modes; the same with the orbital frequency and the slightly different one by the 1PN effect. The same condition of stability with the previous one, which is valid even for the general perturbations, is obtained from the lying perturbations.
123 - Jinxin Xue 2014
In this paper, we show that there is a Cantor set of initial conditions in the planar four-body problem such that all four bodies escape to infinity in a finite time, avoiding collisions. This proves the Painlev{e} conjecture for the four-body case, and thus settles the last open case of the conjecture.
274 - Tingjie Zhou , Zhihong Xia 2021
We introduce an algebraic method to study local stability in the Newtonian $n$-body problem when certain symmetries are present. We use representation theory of groups to simplify the calculations of certain eigenvalue problems. The method should be applicable in many cases, we give two main examples here: the square central configurations with four equal masses, and the equilateral triangular configurations with three equal masses plus an additional mass of arbitrary size at the center. We explicitly found the eigenvalues of certain 8x8 Hessians in these examples, with only some simple calculations of traces. We also studied the local stability properties of corresponding relative equilibria in the four-body problems.
Motivated by the recent works on the stability of symmetric periodic orbits of the elliptic Sitnikov problem, for time-periodic Newtonian equations with symmetries, we will study symmetric periodic solutions which are emanated from nonconstant periodic solutions of autonomous equations. By using the theory of Hills equations, we will first deduce in this paper a criterion for the linearized stability and instability of periodic solutions which are odd in time. Such a criterion is complementary to that for periodic solutions which are even in time, obtained recently by the present authors. Applying these criteria to the elliptic Sitnikov problem, we will prove in an analytical way that the odd $(2p,p)$-periodic solutions of the elliptic Sitnikov problem are hyperbolic and therefore are Lyapunov unstable when the eccentricity is small, while the corresponding even $(2p,p)$-periodic solutions are elliptic and linearized stable. These are the first analytical results on the stability of nonconstant periodic orbits of the elliptic Sitnikov problem.
117 - Matteo Capoferri 2021
Consider an elliptic self-adjoint pseudodifferential operator $A$ acting on $m$-columns of half-densities on a closed manifold $M$, whose principal symbol is assumed to have simple eigenvalues. Relying on a basis of pseudodifferential projections commuting with $A$, we construct an almost-unitary pseudodifferential operator that diagonalizes $A$ modulo an infinitely smoothing operator. We provide an invariant algorithm for the computation of its full symbol, as well as an explicit closed formula for its subprincipal symbol. Finally, we give a quantitative description of the relation between the spectrum of $A$ and the spectrum of its approximate diagonalization, and discuss the implications at the level of spectral asymptotics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا