No Arabic abstract
We describe the computation of the amplitude A_2 for a kaon to decay into two pions with isospin I=2. The results presented in the letter Phys.Rev.Lett. 108 (2012) 141601 from an analysis of 63 gluon configurations are updated to 146 configurations giving Re$A_2=1.381(46)_{textrm{stat}}(258)_{textrm{syst}} 10^{-8}$ GeV and Im$A_2=-6.54(46)_{textrm{stat}}(120)_{textrm{syst}}10^{-13}$ GeV. Re$A_2$ is in good agreement with the experimental result, whereas the value of Im$A_2$ was hitherto unknown. We are also working towards a direct computation of the $Kto(pipi)_{I=0}$ amplitude $A_0$ but, within the standard model, our result for Im$A_2$ can be combined with the experimental results for Re$A_0$, Re$A_2$ and $epsilon^prime/epsilon$ to give Im$A_0/$Re$A_0= -1.61(28)times 10^{-4}$ . Our result for Im,$A_2$ implies that the electroweak penguin (EWP) contribution to $epsilon^prime/epsilon$ is Re$(epsilon^prime/epsilon)_{mathrm{EWP}} = -(6.25 pm 0.44_{textrm{stat}} pm 1.19_{textrm{syst}}) times 10^{-4}$.
We review the status of recent calculations by the RBC-UKQCD collaboration of the complex amplitude $A_2$, corresponding to the decay of a kaon to a two pion state with total isospin 2. In particular, we present preliminary results from two new ensembles: $48^3 times 96$ with $a^{-1}=1.73$ GeV and $64^3 times 128$ with $a^{-1}=2.3$ GeV, both at physical kinematics. Both ensembles were generated Iwasaki gauge action and domain wall fermion action with 2+1 flavours. These results, in comparison to our earlier ones on a $32^3$ DSDR lattice with $a^{-1}=1.36$ GeV, enable us to significantly reduce the discretization errors. The partial cancellation between the two dominant contractions contributing to Re($A_2$) has been confirmed and we believe that this cancellation is a major contribution to the $Delta I=1/2$ rule.
We present new results for the amplitude $A_2$ for a kaon to decay into two pions with isospin $I=2$: Re$A_2 = 1.50(4)_mathrm{stat}(14)_mathrm{syst}times 10^{-8}$ GeV; Im$A_2 = -6.99(20)_mathrm{stat}(84)_mathrm{syst}times 10^{-13}$ GeV. These results were obtained from two ensembles generated at physical quark masses (in the isospin limit) with inverse lattice spacings $a^{-1}=1.728(4)$ GeV and $2.358(7)$ GeV. We are therefore able to perform a continuum extrapolation and hence largely to remove the dominant systematic uncertainty from our earlier results, that due to lattice artefacts. The only previous lattice computation of $Ktopipi$ decays at physical kinematics was performed using an ensemble at a single, rather coarse, value of the lattice spacing ($a^{-1}simeq 1.37(1)$ GeV). We confirm the observation that there is a significant cancellation between the two dominant contributions to Re$A_2$ which we suggest is an important ingredient in understanding the $Delta I=1/2$ rule, Re$A_0$/Re$A_2simeq 22.5$, where the subscript denotes the total isospin of the two-pion final state. Our result for $A_2$ implies that the electroweak penguin contribution to $epsilon^prime/epsilon$ is Re($epsilon^prime/epsilon)_textrm{EWP}=-(6.6pm 1.0)times 10^{-4}$.
We report a direct lattice calculation of the $K$ to $pipi$ decay matrix elements for both the $Delta I=1/2$ and 3/2 amplitudes $A_0$ and $A_2$ on 2+1 flavor, domain wall fermion, $16^3times32times16$ lattices. This is a complete calculation in which all contractions for the required ten, four-quark operators are evaluated, including the disconnected graphs in which no quark line connects the initial kaon and final two-pion states. These lattice operators are non-perturbatively renormalized using the Rome-Southampton method and the quadratic divergences are studied and removed. This is an important but notoriously difficult calculation, requiring high statistics on a large volume. In this paper we take a major step towards the computation of the physical $Ktopipi$ amplitudes by performing a complete calculation at unphysical kinematics with pions of mass 422,MeV at rest in the kaon rest frame. With this simplification we are able to resolve Re$(A_0)$ from zero for the first time, with a 25% statistical error and can develop and evaluate methods for computing the complete, complex amplitude $A_0$, a calculation central to understanding the $Delta =1/2$ rule and testing the standard model of CP violation in the kaon system.
Phase shifts for $s$-wave $pipi$ scattering in both the $I=0$ and $I=2$ channels are determined from a lattice QCD calculation performed on 741 gauge configurations obeying G-parity boundary conditions with a physical pion mass and lattice size of $32^3times 64$. These results support our recent study of direct CP violation in $Ktopipi$ decay cite{Abbott:2020hxn}, improving our earlier 2015 calculation cite{Bai:2015nea}. The phase shifts are determined for both stationary and moving $pipi$ systems, at three ($I=0$) and four ($I=2$) different total momenta. We implement several $pipi$ interpolating operators including a scalar bilinear $sigma$ operator and paired single-pion bilinear operators with the constituent pions carrying various relative momenta. Several techniques, including correlated fitting and a bootstrap determination of p-values have been used to refine the results and a comparison with the generalized eigenvalue problem (GEVP) method is given. A detailed systematic error analysis is performed which allows phase shift results to be presented at a fixed energy.
The pi+pi+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of m_pi~390 MeV with an anisotropic n_f=2+1 clover fermion discretization in four lattice volumes, with spatial extent L~2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of b_s~0.123 fm in the spatial direction and b_t b_s/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of pi+pi+ systems with both zero and non-zero total momentum in the lattice volume using Luschers method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: m_pi^2 a r = 3+O(m_pi^2/Lambda_chi^2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.