Do you want to publish a course? Click here

Warm HCN in the planet formation zone of GV Tau N

96   0   0.0 ( 0 )
 Added by Asuncion Fuente
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Plateau de Bure Interferometer has been used to map the continuum emission at 3.4 mm and 1.1 mm together with the J=1->0 and J=3->2 lines of HCN and HCO+ towards the binary star GV Tau. The 3.4 mm observations did not resolve the binary components and the HCN J=1->0 and HCO+ J=1->0 line emissions trace the circumbinary disk and the flattened envelope. However, the 1.1 mm observations resolved the individual disks of GV Tau N and GV Tau S and allowed us to study their chemistry. We detected the HCN 3->2 line only towards the individual disk of GV Tau N, and the emission of the HCO+ 3->2 line towards GV Tau S. Simple calculations indicate that the 3->2 line of HCN is formed in the inner R<12 AU of the disk around GV Tau N where the HCN/HCO+ abundance ratio is >300. On the contrary, this ratio is <1.6 in the disk around GV Tau S. The high HCN abundance measured in GV Tau N is well explained by photo-chemical processes in the warm (>400K) and dense disk surface.



rate research

Read More

131 - E. L. Gibb 2007
We present the first high-resolution, ground-based observations of HCN and C2H2 toward the T Tauri binary star system GV Tau. We detected strong absorption due to HCN nu_3 and weak C2H2 (nu_3 and nu_2 + (nu_4 + nu_5)^0_+) absorption toward the primary (GV Tau S) but not the infrared companion. We also report CO column densities and rotational temperatures, and present abundances relative to CO of HCN/CO ~0.6% and C2H2/CO ~1.2% and an upper limit for CH4/CO < 0.37% toward GV Tau S. Neither HCN nor C2H2 were detected toward the infrared companion and results suggest that abundances may differ between the two sources.
In this work is investigated the possibility of close-binary star systems having Earth-size planets within their habitable zones. First, we selected all known close-binary systems with confirmed planets (totaling 22 systems) to calculate the boundaries of their respective habitable zones (HZ). However, only eight systems had all the data necessary for the computation of the HZ. Then, we numerically explored the stability within the habitable zones for each one of the eight systems using test particles. From the results, we selected five systems that have stable regions inside the habitable zones (HZ), namely Kepler-34, 35, 38, 413 and 453. For these five cases of systems with stable regions in the HZ, we perform a series of numerical simulations for planet formation considering disks composed of planetary embryos and planetesimals, with two distinct density profiles, in addition to the stars and host planets of each system. We found that in the case of Kepler-34 and 453 systems no Earth-size planet is formed within the habitable zones. Although planets with Earth-like masses were formed in the Kepler-453, but they were outside the HZ. In contrast, for Kepler-35 and 38 systems, the results showed that potentially habitable planets are formed in all simulations. In the case of the Kepler-413 system, in just one simulation a terrestrial planet was formed within the habitable zone.
A large effort has been made to detect warm gas in the planet formation zone of circumstellar discs using space and ground-based near infrared facilities. GV Tau N, the most obscured component of the GV Tau system, is an outstanding source, being one of the first targets detected in HCN and the only one detected in CH$_4$ so far. Although near infrared observations have shed light on its chemical content, the physical structure and kinematics of the circumstellar matter remained unknown. We use interferometric images of the HCN 3-2 and $^{13}$CO 3-2 lines, and far-IR observations of $^{13}$CO, HCN, CN and H$_2$O transitions to discern the morphology, kinematics, and chemistry of the dense gas close to the star. These observations constitute the first detection of H$_2$O towards GV Tau N. Moreover, ALMA high spatial resolution (~ 7 au) images of the continuum at 1.1 mm and the HCN 3-2 line resolve different gas components towards GV Tau N, a gaseous disc with R~25 au, an ionized jet, and one (or two) molecular outflows. The asymmetric morphology of the gaseous disc shows that it has been eroded by the jet. All observations can be explained if GV Tau N is binary, and the primary component has a highly inclined individual disc relative to the circumbinary disc. We discuss the origin of the water and the other molecules emission according to this scenario. In particular, we propose that the water emission would come from the disrupted gaseous disc and the molecular outflows.
(Abridged) We present CARMA observations of the thermal dust emission from the circumstellar disks around the young stars RYTau and DGTau at wavelengths of 1.3mm and 2.8mm. The angular resolution of the maps is as high as 0.15arcsec, or 20AU at the distance of the Taurus cloud, which is a factor of 2 higher than has been achieved to date at these wavelengths. The unprecedented detail of the resulting disk images enables us to address three important questions related to the formation of planets. (1) What is the radial distribution of the circumstellar dust? (2) Does the dust emission show any indication of gaps that might signify the presence of (proto-)planets? (3) Do the dust properties depend on the orbital radius? We find that modeling the disk surface density in terms of either a classical power law or the similarity solution for viscous disk evolution, reproduces the observations well. The 1.3mm image from RYTau shows two peaks separated by 0.2arcsec with a decline in the dust emission toward the stellar position, which is significant at about 2-4sigma. For both RYTau and DGTau, the dust emission at radii larger than 15 AU displays no significant deviation from an unperturbed viscous disk model. In particular, no radial gaps in the dust distribution are detected. Under reasonable assumptions, we exclude the presence of planets more massive than 5 Jupiter masses orbiting either star at distances between about 10 and 60 AU. The radial variation of the dust opacity slope, beta, was investigated by comparing the 1.3mm and 2.8mm observations. We find mean values of beta of 0.5 and 0.7 for DGTau and RYTau respectively. Variations in beta are smaller than 0.7 between 20 and 70 AU. These results confirm that the circumstellar dust throughout these disks differs significantly from dust in the interstellar medium.
We report the detection of V1298 Tau b, a warm Jupiter-sized planet ($R_P$ = 0.91 $pm$ 0.05~ $R_mathrm{Jup}$, $P = 24.1$ days) transiting a young solar analog with an estimated age of 23 million years. The star and its planet belong to Group 29, a young association in the foreground of the Taurus-Auriga star-forming region. While hot Jupiters have been previously reported around young stars, those planets are non-transiting and near-term atmospheric characterization is not feasible. The V1298 Tau system is a compelling target for follow-up study through transmission spectroscopy and Doppler tomography owing to the transit depth (0.5%), host star brightness ($K_s$ = 8.1 mag), and rapid stellar rotation ($vsin{i}$ = 23 kms). Although the planet is Jupiter-sized, its mass is presently unknown due to high-amplitude radial velocity jitter. Nevertheless, V1298 Tau b may help constrain formation scenarios for at least one class of close-in exoplanets, providing a window into the nascent evolution of planetary interiors and atmospheres.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا