Do you want to publish a course? Click here

The New Look pMSSM with Neutralino and Gravitino LSPs

432   0   0.0 ( 0 )
 Added by Ahmed Ismail
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

The pMSSM provides a broad perspective on SUSY phenomenology. In this paper we generate two new, very large, sets of pMSSM models with sparticle masses extending up to 4 TeV, where the lightest supersymmetric particle (LSP) is either a neutralino or gravitino. The existence of a gravitino LSP necessitates a detailed study of its cosmological effects and we find that Big Bang Nucleosynthesis places strong constraints on this scenario. Both sets are subjected to a global set of theoretical, observational and experimental constraints resulting in a sample of sim 225k viable models for each LSP type. The characteristics of these two model sets are briefly compared. We confront the neutralino LSP model set with searches for SUSY at the 7 TeV LHC using both the missing (MET) and non-missing ET ATLAS analyses. In the MET case, we employ Monte Carlo estimates of the ratios of the SM backgrounds at 7 and 8 TeV to rescale the 7 TeV data-driven ATLAS backgrounds to 8 TeV. This allows us to determine the pMSSM parameter space coverage for this collision energy. We find that an integrated luminosity of sim 5-20 fb^{-1} at 8 TeV would yield a substantial increase in this coverage compared to that at 7 TeV and can probe roughly half of the model set. If the pMSSM is not discovered during the 8 TeV run, then our model set will be essentially void of gluinos and lightest first and second generation squarks that are lesssim 700-800 GeV, which is much less than the analogous mSUGRA bound. Finally, we demonstrate that non-MET SUSY searches continue to play an important role in exploring the pMSSM parameter space. These two pMSSM model sets can be used as the basis for investigations for years to come.



rate research

Read More

The $R$-parity violating decays of Bino neutralino LSPs are analyzed within the context of the $B-L$ MSSM heterotic standard model. These LSPs correspond to statistically determined initial soft supersymmetry breaking parameters which, when evolved using the renormalization group equations, lead to an effective theory satisfying all phenomenological requirements; including the observed electroweak vector boson masses and the Higgs mass. The explicit RPV decay channels of these LSPs into standard model particles, the analytic and numerical decay rates and the associated branching ratios are presented. The analysis of these quantities breaks into two separate calculations; first, for Bino neutralino LSPs with mass larger than $M_{W^{pm}}$ and, second, when the Bino neutralino mass is smaller than the electroweak scale. The RPV decay processes in both of these regions is analyzed in detail. The decay lengths of these RPV interactions are discussed. It is shown that for heavy Bino neutralino LSPs the vast majority of these decays are prompt, although a small, but calculable, number correspond to displaced decays of various lengths. The situation is reversed for light Bino LSPs, only a small number of which can RPV decay promptly. The relation of these results to the neutrino hierarchy--either normal or inverted--is discussed in detail.
We study SUSY signatures at the 7, 8 and 14 TeV LHC employing the 19-parameter, R-Parity conserving p(henomenological)MSSM, in the scenario with a neutralino LSP. Our results were obtained via a fast Monte Carlo simulation of the ATLAS SUSY analysis suite. The flexibility of this framework allows us to study a wide variety of SUSY phenomena simultaneously and to probe for weak spots in existing SUSY search analyses. We determine the ranges of the sparticle masses that are either disfavored or allowed after the searches with the 7 and 8 TeV data sets are combined. We find that natural SUSY models with light squarks and gluinos remain viable. We extrapolate to 14 TeV with both 300 fb$^{-1}$ and 3 ab$^{-1}$ of integrated luminosity and determine the expected sensitivity of the jets + MET and stop searches to the pMSSM parameter space. We find that the high-luminosity LHC will be powerful in probing SUSY with neutralino LSPs and can provide a more definitive statement on the existence of natural Supersymmetry.
The $R$-parity violating decays of both Wino chargino and Wino neutralino LSPs are analyzed within the context of the $B-L$ MSSM heterotic standard model. These LSPs correspond to statistically determined initial soft supersymmetry breaking parameters which, when evolved using the renormalization group equations, lead to an effective theory satisfying all phenomenological requirements; including the observed electroweak vector boson and Higgs masses. The explicit decay channels of these LSPs into standard model particles, the analytic and numerical decay rates and the associated branching ratios are presented. The decay lengths of these RPV interactions are discussed. It is shown that the vast majority of these decays are prompt, although a small, but calculable, number correspond to displaced vertices of various lengths. It is demonstrated that for a Wino chargino LSP, the NLSP is the Wino neutralino with a mass only slightly higher than the LSP-- and vice-versa. As a consequence, we show that both the Wino chargino and Wino neutralino LSP/NLSP $R$-parity violating decays should be simultaneously observable at the CERN LHC.
It has been shown that very light or even massless neutralinos are consistent with all current experiments, given non-universal gaugino masses. Furthermore, a very light neutralino is consistent with astrophysical bounds from supernov{ae} and cosmological bounds on dark matter. Here we study the cosmological constraints on this scenario from Big Bang nucleosynthesis taking gravitinos into account and find that a very light neutralino is even favoured by current observations.
We study the scenario of gravitino DM with a general neutralino NLSP in a model independent way. We consider all neutralino decay channels and compare them with the most recent BBN constraints. We check how those bounds are relaxed for a Higgsino or a Wino NLSP in comparison to the Bino neutralino case and look for possible loopholes in the general MSSM parameter space.We determine constraints on the gravitino and neutralino NLSP mass and comment on the possibility of detecting these scenarios at colliders.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا