In this paper we show that the Schrodinger-Newton equation for spherically symmetric gravitational fields can be derived in a WKB-like expansion in 1/c from the Einstein-Klein-Gordon and Einstein-Dirac system.
It is well known that the Klein-Gordon equation in curved spacetime is conformally noninvariant, both with and without a mass term. We show that such a noninvariance provides nontrivial physical insights at different levels, first within the fully relativistic regime, then at the nonrelativistic regime leading to the Schrodinger equation, and then within the de Broglie-Bohm causal interpretation of quantum mechanics. The conformal noninvariance of the Klein-Gordon equation coupled to a vector potential is confronted with the conformal invariance of Maxwells equations in the presence of a charged current. The conformal invariance of the non-minimally coupled Klein-Gordon equation to gravity is then examined in light of the conformal invariance of Maxwells equations. Finally, the consequence of the noninvariance of the equation on the Aharonov-Bohm effect in curved spacetime is discussed. The issues that arise at each of these different levels are thoroughly analyzed.
We consider the Einstein-Dirac field equations describing a self-gravitating massive neutrino, looking for axially-symmetric exact solutions; in the search of general solutions, we find some that are specific and which have critical features, such as the fact that the space-time curvature turns out to be flat and the spinor field gives rise to a vanishing bi-linear scalar $overline{psi}psi=0$ with non-vanishing bi-linear pseudo-scalar $ioverline{psi}gamma^5psi ot=0$: because in quantum field theory general computational methods are built on plane-wave solutions, for which bi-linear pseudo-scalar vanishes while the bi-linear scalar does not vanish, then the solutions we found cannot be treated with the usual machinery of quantum field theory. This means that for the Einstein-Dirac system there exist admissible solutions which nevertheless cannot be quantized with the common prescriptions; we regard this situation as yet another issue of tension between Einstein gravity and quantum principles. Possible ways to quench this tension can be seen either in enlarging the validity of quantum field theory or by restricting the space of the solutions of the Einstein-Dirac system of field equations.
This note aims to give prominence to some new results on the absence and localization of eigenvalues for the Dirac and Klein-Gordon operators, starting from known resolvent estimates already established in the literature combined with the renowned Birman-Schwinger principle.
We consider steady state solutions of the massive, asymptotically flat, spherically symmetric Einstein-Vlasov system, i.e., relativistic models of galaxies or globular clusters, and steady state solutions of the Einstein-Euler system, i.e., relativistic models of stars. Such steady states are embedded into one-parameter families parameterized by their central redshift $kappa>0$. We prove their linear instability when $kappa$ is sufficiently large, i.e., when they are strongly relativistic, and that the instability is driven by a growing mode. Our work confirms the scenario of dynamic instability proposed in the 1960s by Zeldovich & Podurets (for the Einstein-Vlasov system) and by Harrison, Thorne, Wakano, & Wheeler (for the Einstein-Euler system). Our results are in sharp contrast to the corresponding non-relativistic, Newtonian setting. We carry out a careful analysis of the linearized dynamics around the above steady states and prove an exponential trichotomy result and the corresponding index theorems for the stable/unstable invariant spaces. Finally, in the case of the Einstein-Euler system we prove a rigorous version of the turning point principle which relates the stability of steady states along the one-parameter family to the winding points of the so-called mass-radius curve.
We study the non relativistic and ultra relativistic limits in the two-dimensional nonlinear damped Klein-Gordon equation driven by a space-time white noise on the torus. In order to take the limits, it is crucial to clarify the parameter dependence in the estimates of solution. In this paper we present two methods to confirm this parameter dependence. One is the classical, simple energy method. Another is the method via Strichartz estimates.