Do you want to publish a course? Click here

Flow states in two-dimensional Rayleigh-Benard convection as a function of aspect-ratio and Rayleigh number

192   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this numerical study on two-dimensional Rayleigh-Benard convection we consider $10^7 leq Ra leq 10^{12}$ in aspect ratio $0.23 leq Gamma leq 13$ samples. We focus on several cases. First we consider small aspect ratio cells, where at high Ra number we find a sharp transition from a low Ra number branch towards a high Ra number branch, due to changes in the flow structure. Subsequently, we show that the influence of the aspect ratio on the heat transport decreases with increasing aspect ratio, although even at very large aspect ratio of $Gammaapprox10$ variations up to 2.5% in the heat transport as a function of Gamma are observed. Finally, we observe long-lived transients up to at least $Ra=10^9$, as in certain aspect ratio cells we observe different flow states that are stable for thousands of turnover times.



rate research

Read More

We analyse the nonlinear dynamics of the large scale flow in Rayleigh-Benard convection in a two-dimensional, rectangular geometry of aspect ratio $Gamma$. We impose periodic and free-slip boundary conditions in the streamwise and spanwise directions, respectively. As Rayleigh number Ra increases, a large scale zonal flow dominates the dynamics of a moderate Prandtl number fluid. At high Ra, in the turbulent regime, transitions are seen in the probability density function (PDF) of the largest scale mode. For $Gamma = 2$, the PDF first transitions from a Gaussian to a trimodal behaviour, signifying the emergence of reversals of the zonal flow where the flow fluctuates between three distinct turbulent states: two states in which the zonal flow travels in opposite directions and one state with no zonal mean flow. Further increase in Ra leads to a transition from a trimodal to a unimodal PDF which demonstrates the disappearance of the zonal flow reversals. On the other hand, for $Gamma = 1$ the zonal flow reversals are characterised by a bimodal PDF of the largest scale mode, where the flow fluctuates only between two distinct turbulent states with zonal flow travelling in opposite directions.
Using direct numerical simulations, we study the statistical properties of reversals in two-dimensional Rayleigh-Benard convection for infinite Prandtl number. We find that the large-scale circulation reverses irregularly, with the waiting time between two consecutive genuine reversals exhibiting a Poisson distribution on long time scales, while the interval between successive crossings on short time scales shows a power law distribution. We observe that the vertical velocities near the sidewall and at the center show different statistical properties. The velocity near the sidewall shows a longer autocorrelation and $1/f^2$ power spectrum for a wide range of frequencies, compared to shorter autocorrelation and a narrower scaling range for the velocity at the center. The probability distribution of the velocity near the sidewall is bimodal, indicating a reversing velocity field. We also find that the dominant Fourier modes capture the dynamics at the sidewall and at the center very well. Moreover, we show a signature of weak intermittency in the fluctuations of velocity near the sidewall by computing temporal structure functions.
We perform a bifurcation analysis of the steady state solutions of Rayleigh--Benard convection with no-slip boundary conditions in two dimensions using a numerical method called deflated continuation. By combining this method with an initialisation strategy based on the eigenmodes of the conducting state, we are able to discover multiple solutions to this non-linear problem, including disconnected branches of the bifurcation diagram, without the need of any prior knowledge of the dynamics. One of the disconnected branches we find contains a s-shape bifurcation with hysteresis, which is the origin of the flow pattern that may be related to the dynamics of flow reversals in the turbulent regime. Linear stability analysis is also performed to analyse the steady and unsteady regimes of the solutions in the parameter space and to characterise the type of instabilities.
We study the stability of steady convection rolls in 2D Rayleigh--Benard convection with free-slip boundaries and horizontal periodicity over twelve orders of magnitude in the Prandtl number $(10^{-6} leq Pr leq 10^6)$ and five orders of magnitude in the Rayleigh number $(8pi^4 < Ra leq 3 times 10^7)$. The analysis is facilitated by partitioning our modal expansion into so-called even and odd modes. With aspect ratio $Gamma = 2$, we observe that zonal modes (with horizontal wavenumber equal to zero) can emerge only once the steady convection roll state consisting of even modes only becomes unstable to odd perturbations. We determine the stability boundary in the $(Pr,Ra)$-plane and observe remarkably intricate features corresponding to qualitative changes in the solution, as well as three regions where the steady convection rolls lose and subsequently regain stability as the Rayleigh number is increased. We study the asymptotic limit $Pr to 0$ and find that the steady convection rolls become unstable almost instantaneously, eventually leading to non-linear relaxation osculations and bursts, which we can explain with a weakly non-linear analysis. In the complementary large-$Pr$ limit, we observe that the stability boundary reaches an asymptotic value $Ra = 2.54 times 10^7$ and that the zonal modes at the instability switch off abruptly at a large, but finite, Prandtl number.
For rapidly rotating turbulent Rayleigh--Benard convection in a slender cylindrical cell, experiments and direct numerical simulations reveal a boundary zonal flow (BZF) that replaces the classical large-scale circulation. The BZF is located near the vertical side wall and enables enhanced heat transport there. Although the azimuthal velocity of the BZF is cyclonic (in the rotating frame), the temperature is an anticyclonic traveling wave of mode one whose signature is a bimodal temperature distribution near the radial boundary. The BZF width is found to scale like $Ra^{1/4}Ek^{2/3}$ where the Ekman number $Ek$ decreases with increasing rotation rate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا