Do you want to publish a course? Click here

Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

141   0   0.0 ( 0 )
 Added by Theo Costi
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model, we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat, $C_{rm imp}$, to be calculated accurately from local static correlation functions; specifically via $C_{rm imp}=frac{partial E_{rm ionic}}{partial T} + 1/2frac{partial E_{rm hyb}}{partial T}$, where $E_{rm ionic}$ and $E_{rm hyb}$ are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to $C_{rm imp}$. For the non-degenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The new approach could also be of interest within other impurity solvers, e.g., within quantum Monte Carlo techniques.



rate research

Read More

Quantum impurity problems can be solved using the numerical renormalization group (NRG), which involves discretizing the free conduction electron system and mapping to a `Wilson chain. It was shown recently that Wilson chains for different electronic species can be interleaved by use of a modified discretization, dramatically increasing the numerical efficiency of the RG scheme [Phys. Rev. B 89, 121105(R) (2014)]. Here we systematically examine the accuracy and efficiency of the `interleaved NRG (iNRG) method in the context of the single impurity Anderson model, the two-channel Kondo model, and a three-channel Anderson-Hund model. The performance of iNRG is explicitly compared with `standard NRG (sNRG): when the average number of states kept per iteration is the same in both calculations, the accuracy of iNRG is equivalent to that of sNRG but the computational costs are signifficantly lower in iNRG when the same symmetries are exploited. Although iNRG weakly breaks SU(N) channel symmetry (if present), both accuracy and numerical cost are entirely competitive with sNRG exploiting full symmetries. iNRG is therefore shown to be a viable and technically simple alternative to sNRG for high-symmetry models. Moreover, iNRG can be used to solve a range of lower-symmetry multiband problems that are inaccessible to sNRG.
The density matrix renormalization group method is applied to obtain the ground state phase diagram of the single impurity Anderson model on the honeycomb lattice at half filling. The calculation of local static quantities shows that the phase diagram contains two distinct phases, the local moment (LM) phase and the asymmetric strong coupling (ASC) phase. These results are supported by the local spin and charge excitation spectra, which exhibit qualitatively different behavior in these two phases and also reveal the existence of the valence fluctuating point at the phase boundary. For comparison, we also study the low-energy effective pseudogap Anderson model. Although the high-energy excitations are obviously different, we find that the ground state phase diagram and the asymptotically low-energy excitations are in good quantitative agreement with those for the single impurity Anderson model on the honeycomb lattice, thus providing the first quantitative justification for the previous studies based on low-energy approximate approaches. Furthermore, we find that the lowest entanglement level is doubly degenerate for the LM phase, whereas it is singlet for the ASC phase and is accidentally three fold degenerate at the valence fluctuating point. Our results therefore clearly demonstrate that the low-lying entanglement spectrum can be used to determine with high accuracy the phase boundary of the impurity quantum phase transition.
We show how the density-matrix numerical renormalization group (DM-NRG) method can be used in combination with non-Abelian symmetries such as SU(N), where the decomposition of the direct product of two irreducible representations requires the use of a so-called outer multiplicity label. We apply this scheme to the SU(3) symmetrical Anderson model, for which we analyze the finite size spectrum, determine local fermionic, spin, superconducting, and trion spectral functions, and also compute the temperature dependence of the conductance. Our calculations reveal a rich Fermi liquid structure.
We introduce a block Lanczos (BL) recursive technique to construct quasi-one-dimensional models, suitable for density-matrix renormalization group (DMRG) calculations, from single- as well as multiple-impurity Anderson models in any spatial dimensions. This new scheme, named BL-DMRG method, allows us to calculate not only local but also spatially dependent static and dynamical quantities of the ground state for general Anderson impurity models without losing elaborate geometrical information of the lattice. We show that the BL-DMRG method can be easily extended to treat a multi-orbital Anderson impurity model. We also show that the symmetry adapted BL bases can be utilized, when it is appropriate, to reduce the computational cost. As a demonstration, we apply the BL-DMRG method to three different models for graphene: (i) a single adatom on the honeycomb lattice, (ii) a substitutional impurity in the honeycomb lattice, and (iii) an effective model for a single carbon vacancy in graphene. Our analysis reveals that, for the particle-hole symmetric case at half filling of electron density, the ground state of model (i) behaves as an isolated magnetic impurity with no Kondo screening while the ground state of the other two models forms a spin singlet state. We also calculate the real-space dependence of the spin-spin correlation functions between the impurity site and the conduction sites for these three models. Our results clearly show that, reflecting the presence of absence of unscreened magnetic moment at the impurity site, the spin-spin correlation functions decay as $r^{-3}$, differently from the non-interacting limit ($r^{-2}$), for model (i) and as $ r^{-4}$, exactly the same as the non-interacting limit, for models (ii) and (iii) in the asymptotic $r$, where $r$ is the distance between the impurity site and the conduction site.
The self-energy method for quantum impurity models expresses the correlation part of the self-energy in terms of the ratio of two Green functions and allows for a more accurate calculation of equilibrium spectral functions, than is possible directly from the one-particle Green function [Bulla {it et al.} Journal of Physics: Condensed Matter {bf 10}, 8365 (1998)], for example, within the numerical renormalization group method. In addition, the self-energy itself is a central quantity required in the dynamical mean field theory of strongly correlated lattice models. Here, we show how to generalize the self-energy method to the time-dependent situation for the prototype model of strong correlations, the Anderson impurity model . We use the equation of motion method to obtain closed expressions for the local Green function in terms of a time-dependent correlation self-energy, with the latter being given as a ratio of a two- and a one-particle time-dependent Green function. We benchmark this self-energy approach to time-dependent spectral functions against the direct approach within the time-dependent numerical renormalization group method. The self-energy approach improves the accuracy of time-dependent spectral function calculations, and, the closed form expressions for the Green function allow for a clear picture of the time-evolution of spectral features at the different characteristic time-scales. The self-energy approach is of potential interest also for other quantum impurity solvers for real-time evolution, including time-dependent density matrix renormalization group and continuous time quantum Monte Carlo techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا