Observing planet-disk interaction in debris disks


Abstract in English

Context. Structures in debris disks induced by planetdisk interaction are promising to provide valuable constraints on the existence and properties of embedded planets. Aims. We investigate the observability of structures in debris disks induced by planet-disk interaction. Methods. The observability of debris disks with the Atacama Large Millimeter/submillimeter Array (ALMA) is studied on the basis of a simple analytical disk model. Furthermore, N-body simulations are used to model the spatial dust distribution in debris disks under the influence of planet-disk interaction. Images at optical scattered light to millimeter thermal re-emission are computed. Available information about the expected capabilities of ALMA and the James Webb Space Telescope (JWST) are used to investigate the observability of characteristic disk structures through spatially resolved imaging. Results. Planet-disk interaction can result in prominent structures. This provides the opportunity of detecting and characterizing extrasolar planets in a range of masses and radial distances from the star that is not accessible to other techniques. Facilities that will be available in the near future are shown to provide the capabilities to spatially resolve and characterize structures in debris disks. Limitations are revealed and suggestions for possible instrument setups and observing strategies are given. In particular, ALMA is limited by its sensitivity to surface brightness, which requires a trade-off between sensitivity and spatial resolution. Space-based midinfrared observations will be able to detect and spatially resolve regions in debris disks even at a distance of several tens of AU from the star, where the emission from debris disks in this wavelength range is expected to be low. [Abridged]

Download