No Arabic abstract
Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements, effective field theory techniques and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we will examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We will then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we will mention applications to the Adler function, which can be used to determine the strong coupling constant, and QCD corrections to muonic-hydrogen.
The Fermilab Lattice and MILC collaborations have shown in one-loop lattice QCD perturbation theory that the renormalization constants of vector and axial-vector mixed clover-asqtad currents are closely related to the product of those for clover-clover and asqtad-asqtad (local) vector currents. To be useful for future higher precision calculations this relationship must be valid beyond one-loop and very general. We test its validity nonperturbatively using clover and Highly Improved Staggered (HISQ) strange quarks, utilising the absolute normalization of the HISQ temporal axial current. We find that the renormalization of the mixed current differs from the square root of the product of the pure HISQ and pure clover currents by $2-3%$. We also compare discretization errors between the clover and HISQ formalisms.
We present the first realistic lattice QCD calculation of the $gamma W$-box diagrams relevant for beta decays. The nonperturbative low-momentum integral of the $gamma W$ loop is calculated using a lattice QCD simulation, complemented by the perturbative QCD result at high momenta. Using the pion semileptonic decay as an example, we demonstrate the feasibility of the method. By using domain wall fermions at the physical pion mass with multiple lattice spacings and volumes, we obtain the axial $gamma W$-box correction to the semileptonic pion decay, $Box_{gamma W}^{VA}big|_{pi}=2.830(11)_{mathrm{stat}}(26)_{mathrm{sys}}times10^{-3}$, with the total uncertainty controlled at the level of $sim1$%. This study sheds light on the first-principles computation of the $gamma W$-box correction to the neutron decay, which plays a decisive role in the determination of $|V_{ud}|$.
We compute the next-to-leading order QCD and electroweak corrections to $Z$ and $W$ pole observables using the dimension-6 Standard Model effective field theory and present numerical results that can easily be included in global fitting programs. Limits on SMEFT coefficient functions are presented at leading order and at next-to-leading order under several assumptions.
We present an implementation of electroweak Z-boson production in association with two jets at hadron colliders in the POWHEG framework, a method that allows the interfacing of NLO-QCD calculations with parton-shower Monte Carlo programs. We focus on the leptonic decays of the weak gauge boson, and take photonic and non-resonant contributions to the matrix elements fully into account. We provide results for observables of particular importance for the suppression of QCD backgrounds to vector-boson fusion processes by means of central-jet-veto techniques. While parton-shower effects are small for most observables associated with the two hardest jets, they can be more pronounced for distributions that are employed in central-jet-veto studies.
We present a lattice QCD calculation of the axial $gamma W$-box diagrams relevant for the kaon semileptonic decays. We utilize a recently proposed method, which connects the electroweak radiative corrections in Sirlins representation to that in chiral perturbation theory. It allows us to use the axial $gamma W$-box correction in the SU(3) limit to obtain the low energy constants for chiral perturbation theory. From first principles our results confirm the previously used low energy constants provided by the minimal resonance model with a significant reduction in uncertainties.