Do you want to publish a course? Click here

Correlation between Quantum Conductance and Atomic Arrangement of Silver Atomic-Size Nanowires

128   0   0.0 ( 0 )
 Added by Pedro Autreto A.S.
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the effect of thermal effects on the structural and transport response of Ag atomic-size nanowires generated by mechanical elongation. Our study involves both time-resolved atomic resolution transmission electron microscopy imaging and quantum conductance measurement using an ultra-high-vacuum mechanically controllable break junction. We have observed drastic changes in conductance and structural properties of Ag nanowires generated at different temperatures (150 and 300 K). By combining electron microscopy images, electronic transport measurements and quantum transport calculations, we have been able to obtain a consistent correlation between the conductance and structural properties of Ag NWs. In particular, our study has revealed the formation of metastable rectangular rod-like Ag wire (3/3) along the (001) crystallographic direction, whose formation is enhanced. These results illustrate the high complexity of analyzing structural and quantum conductance behaviour of metal atomic-size wires; also, they reveal that it is extremely difficult to compare NW conductance experiments performed at different temperatures due to the fundamental modifications of the mechanical behavior.



rate research

Read More

73 - V. Rodrigues 2002
We have analyzed the atomic arrangements and quantum conductance of silver nanowires generated by mechanical elongation. The surface properties of Ag induce unexpected structural properties, as for example, predominance of high aspect ratio rod-like wires. The structural behavior was used to understand the Ag quantum conductance data and the proposed correlation was confirmed by means of theoretical calculations. These results emphasize that the conductance of metal point contacts is determined by the preferred atomic structures and, that atomistic descriptions are essential to interpret the quantum transport behavior of metal nanostructures.
Nanowires of different nature have been shown to self-assemble as a function of stress at the contact between two macroscopic metallic leads. Here we demonstrate for gold wires that the balance between various metastable nanowire configurations is influenced by the microstructure of the starting materials and we discover a new set of periodic structures, which we interpret as due to the atomic discreteness of the contact size for the three principal crystal orientations.
We introduce a computational method for global optimization of structure and ordering in atomic systems. The method relies on interpolation between chemical elements, which is incorporated in a machine learning structural fingerprint. The method is based on Bayesian optimization with Gaussian processes and is applied to the global optimization of Au-Cu bulk systems, Cu-Ni surfaces with CO adsorption, and Cu-Ni clusters. The method consistently identifies low-energy structures, which are likely to be the global minima of the energy. For the investigated systems with 23-66 atoms, the number of required energy and force calculations is in the range 3-75.
The structural evolution and dynamics of silver nanodrops Ag${}_{2896}$ (4.4 nm in diameter) during rapid cooling conditions has been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modeled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique is applied to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of $1.5625times10^{13} Ks^{-1}$ the nanoparticles preserve an amorphous like structure containing a large amount of 1551 and 1541 pairs which correspond to the icosahedral symmetry. For a lower cooling rate ($1.5625times10^{12} Ks^{-1}$), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the fcc and hcp structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small but in correspondence with the structural changes.
CeCuAl3 and CeAuAl3, crystallizing in the non-centrosymmetric BaNiSn3 tetragonal structure, are known mainly for their unusual neutron scattering spectra involving additional excitations ascribed to vibron quasi-bound quantum state in CeCuAl3 and anti-crossing of phonon and crystal field excitations in CeAuAl3. In this work, we present results of nuclear magnetic resonance experiments on their lanthanum analogues - LaCuAl3 and LaAuAl3. The character of nuclear magnetic resonance spectra of 139La, 27Al, and 65Cu measured in LaAuAl3 and LaCuAl3 is dominated by electric quadrupole interaction. The spectral parameters acquired from experimental data are confronted with values obtained from the electronic structure calculations. The results show remarkable diffrences for the two compounds. The 139La spectrum in LaAuAl3 can be interpreted by a single spectral component corresponding to uniform environment of La atoms in the crystal structure, whereas for LaCuAl3 the spectrum decomposition yields a wide distribution of spectral parameters, which is not possible to explain by a single La environment, and multiple non-equivalent La positions in the crystal structure are required to interpret the spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا