Do you want to publish a course? Click here

A Proposal on Quantum Histone Modification in Gene Expression

133   0   0.0 ( 0 )
 Added by Liaofu Luo
 Publication date 2012
  fields Biology
and research's language is English
 Authors Liaofu Luo




Ask ChatGPT about the research

A quantum mechanical model on histone modification is proposed. Along with the methyl / acetate or other groups bound to the modified residues the torsion angles of the nearby histone chain are supposed to participate in the quantum transition cooperatively. The transition rate W is calculated based on the non-radiative quantum transition theory in adiabatic approximation. By using Ws the reaction equations can be written for histone modification and the histone modification level can be calculable from the equations, which is decided by not only the atomic group bound to the modified residue, but also the nearby histone chain. The theory can explain the mechanism for the correlation between a pair of chromatin markers observed in histone modification. The temperature dependence and the coherence-length dependence of histone modification are deduced. Several points for checking the proposed theory and the quantum nature of histone modification are suggested as follows: 1, The relationship between lnW and 1/T is same as usual protein folding. The non-Arhenius temperature dependence of the histone modification level is predicted. 2, The variation of histone modification level through point mutation of some residues on the chain is predicted since the mutation may change the coherence-length of the system. 3, Multi-site modification obeys the quantum superposition law and the comparison between multi-site transition and single modification transition gives an additional clue to the testing of the quantum nature of histone modification.



rate research

Read More

In the last years, tens of thousands gene expression profiles for cells of several organisms have been monitored. Gene expression is a complex transcriptional process where mRNA molecules are translated into proteins, which control most of the cell functions. In this process, the correlation among genes is crucial to determine the specific functions of genes. Here, we propose a novel multi-dimensional stochastic approach to deal with the gene correlation phenomena. Interestingly, our stochastic framework suggests that the study of the gene correlation requires only one theoretical assumption -Markov property- and the experimental transition probability, which characterizes the gene correlation system. Finally, a gene expression experiment is proposed for future applications of the model.
Motivation: Histone modifications are among the most important factors that control gene regulation. Computational methods that predict gene expression from histone modification signals are highly desirable for understanding their combinatorial effects in gene regulation. This knowledge can help in developing epigenetic drugs for diseases like cancer. Previous studies for quantifying the relationship between histone modifications and gene expression levels either failed to capture combinatorial effects or relied on multiple methods that separate predictions and combinatorial analysis. This paper develops a unified discriminative framework using a deep convolutional neural network to classify gene expression using histone modification data as input. Our system, called DeepChrome, allows automatic extraction of complex interactions among important features. To simultaneously visualize the combinatorial interactions among histone modifications, we propose a novel optimization-based technique that generates feature pattern maps from the learnt deep model. This provides an intuitive description of underlying epigenetic mechanisms that regulate genes. Results: We show that DeepChrome outperforms state-of-the-art models like Support Vector Machines and Random Forests for gene expression classification task on 56 different cell-types from REMC database. The output of our visualization technique not only validates the previous observations but also allows novel insights about combinatorial interactions among histone modification marks, some of which have recently been observed by experimental studies.
In this work, the dynamics of fluctuations in gene expression time series is investigated. By using collected data of gene expression from yeast and human organisms, we found that the fluctuations of gene expression level and its average value over time are strongly correlated and obey a scaling law. As this feature is found in yeast and human organisms, it suggests that probably this coupling is a common dynamical organizing property of all living systems. To understand these observations, we propose a stochastic model which can explain these collective fluctuations, and predict the scaling exponent. Interestingly, our results indicate that the observed scaling law emerges from the self-similarity symmetry embedded in gene expression fluctuations.
The ambitious and ultimate research purpose in Systems Biology is the understanding and modelling of the cells system. Although a vast number of models have been developed in order to extract biological knowledge from complex systems composed of basic elements as proteins, genes and chemical compounds, a need remains for improving our understanding of dynamical features of the systems (i.e., temporal-dependence). In this article, we analyze the gene expression dynamics (i.e., how the genes expression fluctuates in time) by using a new constructive approach. This approach is based on only two fundamental ingredients: symmetry and the Markov property of dynamics. First, by using experimental data of human and yeast gene expression time series, we found a symmetry in short-time transition probability from time $t$ to time $t+1$. We call it self-similarity symmetry (i.e., surprisingly, the gene expression short-time fluctuations contain a repeating pattern of smaller and smaller parts that are like the whole, but different in size). Secondly, the Markov property of dynamics reflects that the short-time fluctuation governs the full-time behaviour of the system. Here, we succeed in reconstructing naturally the global behavior of the observed distribution of gene expression (i.e., scaling-law) and the local behaviour of the power-law tail of this distribution, by using only these two ingredients: symmetry and the Markov property of dynamics. This approach may represent a step forward toward an integrated image of the basic elements of the whole cell.
A principal component analysis of the TCGA data for 15 cancer localizations unveils the following qualitative facts about tumors: 1) The state of a tissue in gene expression space may be described by a few variables. In particular, there is a single variable describing the progression from a normal tissue to a tumor. 2) Each cancer localization is characterized by a gene expression profile, in which genes have specific weights in the definition of the cancer state. There are no less than 2500 differentially-expressed genes, which lead to power-like tails in the expression distribution functions. 3) Tumors in different localizations share hundreds or even thousands of differentially expressed genes. There are 6 genes common to the 15 studied tumor localizations. 4) The tumor region is a kind of attractor. Tumors in advanced stages converge to this region independently of patient age or genetic variability. 5) There is a landscape of cancer in gene expression space with an approximate border separating normal tissues from tumors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا