Do you want to publish a course? Click here

Realistic collapse model of bosonic strings

153   0   0.0 ( 0 )
 Added by Roman Sverdlov
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we will utilize the non-trivial shapes of the strings in order to come up with realistic definition of probability amplitudes in a lot more natural way than could be done in point particle counterpart. We then go on to translate GRW model to string theory context. In this paper we limit ourselves to boson-only toy model without D-branes.



rate research

Read More

102 - Erwan Allys 2015
We study the realistic structure of F-term Nambu-Goto cosmic strings forming in a general supersymmetric Grand Unified Theory implementation, assuming standard hybrid inflation. Examining the symmetry breaking of the unification gauge group down to the Standard Model, we discuss the minimal field content necessary to describe abelian cosmic strings appearing at the end of inflation. We find that several fields will condense in most theories, questioning the plausible occurrence of associated currents (bosonic and fermionic). We perturbatively evaluate the modification of their energy per unit length due to the condensates. We provide a criterion for comparing the usual abelian Higgs approximation used in cosmology to realistic situations.
99 - Erwan Allys 2015
We study the bosonic structure of $F$-term Nambu-Goto cosmic strings forming in a realistic SO(10) implementation, assuming standard hybrid inflation. We describe the supersymmetric grand unified theory, and its spontaneous symmetry breaking scheme in parallel with the inflationary process. We also write the explicit tensor formulation of its scalar sector, focusing on the sub-representations singlet under the standard model, which is sufficient to describe the string structure. We then introduce an ansatz for abelian cosmic strings, discussing in details the hypothesis, and write down the field equations and boundary conditions. Finally, after doing a perturbative study of the model, we present and discuss the results obtained with numerical solutions of the string structure.
The mean-square width of the energy profile of bosonic string is calculated considering two boundary terms in the effective action. The perturbative expansion of the Lorentz-invariant boundary terms at the second and the fourth order in the effective action is taken around the free Nambu-Goto action. The calculation are presented for open strings with Dirichlet boundary condition on cylinder.
We investigate the stability of the electroweak Z-string at high temperatures. Our results show that while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. We then consider phenomenologically viable models based on the gauge group $SU(2)_L times SU(2)_R times U(1)_{B-L}$ and show that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. We also show that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed.
179 - Roman Sverdlov 2012
The goal of this paper is to define the Grassmann integral in terms of a limit of a sum around a well-defined contour so that Grassmann numbers gain geometric meaning rather than symbols. The unusual rescaling properties of the integration of an exponential is due to the fact that the integral attains the known values only over a specific set of contours and not over their rescale
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا