Do you want to publish a course? Click here

Periodic force induced stabilization or destabilization of the denatured state of a protein

131   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the effects of an external sinusoidal force in protein folding kinetics. The externally applied force field acts on the each amino acid residues of polypeptide chains. Our simulation results show that mean protein folding time first increases with driving frequency and then decreases passing through a maximum. With further increase of the driving frequency the mean folding time starts increasing as the noise-induced hoping event (from the denatured state to the native state) begins to experience many oscillations over the mean barrier crossing time period. Thus unlike one-dimensional barrier crossing problems, the external oscillating force field induces both emph{stabilization or destabilization of the denatured state} of a protein. We have also studied the parametric dependence of the folding dynamics on temperature, viscosity, non-Markovian character of bath in presence of the external field.



rate research

Read More

The statistical properties of protein folding within the {phi}^4 model are investigated. The calculation is performed using statistical mechanics and path integral method. In particular, the evolution of heat capacity in term of temperature is given for various levels of the nonlinearity of source and the strength of interaction between protein backbone and nonlinear source. It is found that the nonlinear source contributes constructively to the specific heat especially at higher temperature when it is weakly interacting with the protein backbone. This indicates increasing energy absorption as the intensity of nonlinear sources are getting greater. The simulation of protein folding dynamics within the model is also refined.
A correlation between two noise processes driving the thermally activated particles in a symmetric triple well potential, may cause a symmetry breaking and a difference in relative stability of the two side wells with respect to the middle one. This leads to an asymmetric localization of population and splitting of Kramers rate of escape from the middle well, ensuring a preferential distribution of the products in the course of a parallel reaction.
The linear noise approximation models the random fluctuations from the mean field model of a chemical reaction that unfolds near the thermodynamic limit. Specifically, the fluctuations obey a linear Langevin equation up to order $Omega^{-1/2}$, where $Omega$ is the size of the chemical system (usually the volume). Under the presence of disparate timescales, the linear noise approximation admits a quasi-steady-state reduction referred to as the slow scale linear noise approximation. However, the slow scale linear approximation has only been derived for fast/slow systems that are in Tikhonov standard form. In this work, we derive the slow scale linear noise approximation directly from Fenichel theory, without the need for a priori scaling and dimensional analysis. In so doing, we can apply for the first time the slow scale linear noise approximation to fast/slow systems that are not of standard form. This is important, because often times algorithms are only computationally expensive in parameter ranges where the system is singularly perturbed, but not in standard form. We also comment on the breakdown of the slow scale linear noise approximation near dynamic bifurcation points -- a topic that has remained absent in the chemical kinetics literature, despite the presence of bifurcations in simple biochemical reactions, such the Michaelis--Menten reaction mechanism.
A fundamental question in protein folding is whether the coil to globule collapse transition occurs during the initial stages of folding (burst-phase) or simultaneously with the protein folding transition. Single molecule fluorescence resonance energy transfer (FRET) and small angle X-ray scattering (SAXS) experiments disagree on whether Protein L collapse transition occurs during the burst-phase of folding. We study Protein L folding using a coarse-grained model and molecular dynamics simulations. The collapse transition in Protein L is found to be concomitant with the folding transition. In the burst-phase of folding, we find that FRET experiments overestimate radius of gyration, $R_g$, of the protein due to the application of Gaussian polymer chain end-to-end distribution to extract $R_g$ from the FRET efficiency. FRET experiments estimate $approx$ 6AA decrease in $R_g$ when the actual decrease is $approx$ 3AA on Guanidinium Chloride denaturant dilution from 7.5M to 1M, and thereby suggesting pronounced compaction in the protein dimensions in the burst-phase. The $approx$ 3AA decrease is close to the statistical uncertainties of the $R_g$ data measured from SAXS experiments, which suggest no compaction, leading to a disagreement with the FRET experiments. The transition state ensemble (TSE) structures in Protein L folding are globular and extensive in agreement with the $Psi$-analysis experiments. The results support the hypothesis that the TSE of single domain proteins depend on protein topology, and are not stabilised by local interactions alone.
The mechanical unfolding of a simple RNA hairpin and of a 236--bases portion of the Tetrahymena thermophila ribozyme is studied by means of an Ising--like model. Phase diagrams and free energy landscapes are computed exactly and suggest a simple two--state behaviour for the hairpin and the presence of intermediate states for the ribozyme. Nonequilibrium simulations give the possible unfolding pathways for the ribozyme, and the dominant pathway corresponds to the experimentally observed one.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا