A numerical diagonalization technique with canonical Monte-Carlo simulation algorithm is used to study the phase transitions from low temperature (ordered) phase to high temperature (disordered) phase of spinless Falicov-Kimball model on a triangular lattice with correlated hopping ($t^{prime}$). It is observed that the low temperature ordered phases (i.e. regular, bounded and segregated) persist up to a finite critical temperature ($T_{c}$). In addition, we observe that the critical temperature decreases with increasing the correlated hopping in regular and bounded phases whereas it increases in the segregated phase. Single and multi peak patterns seen in the temperature dependence of specific heat ($C_v$) and charge susceptibility ($chi$) for different values of parameters like on-site Coulomb correlation strength ($U$), correlated hopping ($t^{prime}$) and filling of localized electrons ($n_{f}$) are also discussed.
Ground state properties of spinless, extended Falicov-Kimball model (FKM) on a finite size triangular lattice with orbital magnetic field normal to the lattice are studied using numerical diagonalization and Monte-Carlo simulation methods. We show that the ground state configurations of localized electrons strongly depend on the magnetic field. Magnetic field induces a metal to insulator transition accompanied by segregated phase to an ordered regular phase except at density $n_f = 1/2$ of localized electrons. It is proposed that magnetic field can be used as a new tool to produce segregated phase which was otherwise accessible only either with correlated hopping or with large on-site interactions.
Thermodynamic properties of the spinless Falicov-Kimball model are studied on a triangular lattice using numerical diagonalization technique with Monte-Carlo simulation algorithm. Discontinuous metal-insulator transition is observed at finite temperature. Unlike the case of square lattice, here we observe that the finite temperature effect is not able to smear out the discontinuous metal-insulator transition seen in the ground state. Calculation of specific heat (C_v) shows single and double peak structures for different values of parameters like on-site correlation strength (U), f-electron energy (E_f) and temperature.
Ground state magnetic properties of the spin-dependent Falicov-Kimball model (FKM) are studied by incorporating the intrasite exchange correlation J (between itinerant $d$- and localized $f$- electrons) and intersite (superexchange) correlation $J_{se}$ (between localized $f$- electrons) on a triangular lattice for two different fillings. Numerical diagonalization and Monte-Carlo techniques are used to determine the ground state magnetic properties. Transitions from antiferromagnetic to ferromagnetic and again to re-entrant antiferromagnetic phase is observed in a wide range of parameter space. The magnetic moments of $d$- and $f$- electrons are observed to depend strongly on the value of $J$, $J_{se}$ and also on the total number of $d$- electrons ($N_d$).
The spin-dependent Falicov-Kimball model (FKM) is studied on a triangular lattice using numerical diagonalization technique and Monte-Carlo simulation algorithm. Magnetic properties have been explored for different values of parameters: on-site Coulomb correlation $U$, exchange interaction $J$ and filling of electrons. We have found that the ground state configurations exhibit long range Ne`el order, ferromagnetism or a mixture of both as $J$ is varied. The magnetic moments of itinerant ($d$) and localized ($f$) electrons are also studied. For the one-fourth filling case we found no magnetic moment from $d$- and $f$-electrons for $U$ less than a critical value.
Using exact numerical techniques we investigate the nature of excitonic (electron-hole) bound states and the development of exciton coherence in the one-dimensional half-filled extended Falicov-Kimball model. The ground-state phase diagram of the model exhibits, besides band insulator and staggered orbital ordered phases, an excitonic insulator (EI) with power-law correlations. The criticality of the EI state shows up in the von Neumann entropy. The anomalous spectral function and condensation amplitude provide the binding energy and coherence length of the electron-hole pairs which, on their part, point towards a Coulomb interaction driven crossover from BCS-like electron-hole pairing fluctuations to tightly bound excitons. We show that while a mass imbalance between electrons and holes does not affect the location of the BCS-BEC crossover regime it favors staggered orbital ordering to the disadvantage of the EI. Within the BEC regime the quasiparticle dispersion develops a flat valence-band top in accord with the experimental finding for Ta$_2$NiSe$_5$.
Umesh K. Yadav
,T. Maitra
,Ishwar Singh
.
(2012)
.
"Phase transitions in a spinless, extended Falicov-Kimball model on the triangular lattice"
.
Umesh Kumar Yadav Dr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا